Archaeological Excavations at the Little John Site (KdVo-6), Southwest Yukon Territory, Canada - 2010

Submitted to
White River First Nation
Yukon Heritage Branch
Archaeological Survey of Canada
Northern Research Institute of Yukon College

Norman Alexander Easton
Anthropologist
Yukon College
Whitehorse, Yukon Territory, Canada

Scottie Creek Culture History Project Research Manuscript 2011-03
Northern Research Institute, Whitehorse, Yukon
(July 2011)
AKNOWLEDGEMENTS

The 2010 activities of the Scottie Creek Culture History Project were financially supported by the White River First Nation of Beaver Creek, School for Liberal Arts, Yukon College, credit and non-credit participants in Anthropology 225 – Field Methods in Subarctic Archaeology and Ethnography, The Northern Research Institute at Yukon College, Northway, Tetlin, and Tanacross Native Villages of Alaska, Tanana Chiefs Conference, Alaska, Westmark Hotel – Beaver Creek, 1202 Motor Inn of Beaver Creek, and me.

Fieldworkers included

- Credit Undergraduate students in ANTH 225: John Grieve and Amy Krull (University of Victoria, BC), MacKenzie Erskine (U of Wisconsin, Madison), Sarah Huq and Christopher McMillan (Grand Prairie, AB), Pawel Wojtowicz (Gdansk, Poland), Robert Hoskins, Alyssa Money, and Gladis Rubio (U of Southern Florida), Whitney Sutterly (California).

- Credit Graduate Students with approval of their committees: Michael Grooms (PhD program, Dept of Anthropology, U of New Mexico, Supervisor Dr. E James Dixon) and Nicolena Berry (M.A. program, Department of Anthropology, U of Southern California – Fullerton, Supervisor Dr. Steven James).

- Research Interns / Volunteers: Robert Power (Belfast, Ireland), Joseph Easton (Vancouver, B.C.), Margo MacKay (Anchorage, AK), Brooke Nall and Owen Marcotte (Seattle, WA), Nick Jarmain (UNM)

- White River First Nation Youth: Chelsea Johnny, Trudy Brown, Eldred Johnny, Eddie Johnny, Tamika Johnny

Figure 1. 2010 Field Crew Members traveling at their own risk.
As in the past the *Dineh* of the Borderlands region welcomed my students and I with unstinting generosity and love and I thank them all for their continued support of our work in their lands. In particular Chief David Johnny of the White River First Nation, Elders Darlene Northway, Martha Sam, Avis Sam, Ada Gallen, Louis Frank, Jenny Sanford, Joseph Tommy Johnny, Kenny Thomas, and Danny Thomas, as well as Ruth Johnny, Marilyn Sanford, Angela and Robert Lee Demit all provided meaningful instructions in the *Dineh Way* and provided gifts of the land and their time to their *Noogli* visitors.

Ts’inni Cho.

Norman Alexander Easton / Ts’ogot Gaay

Front Cover Photo: 2010 Field School Members excavating on the West Lobe. Unless otherwise indicated, all photos and illustrations are © N. A. Easton
LIST OF CONTENTS

SUMMARY OF ACTIVITIES .. 8
REGIONAL CONTEXT OF THE AREA OF STUDY .. 13
GLACIAL HISTORY AND PALEOECOLOGY OF THE STUDY REGION 13
CONTEMPORARY ENVIRONMENTAL ECOLOGY OF THE STUDY REGION 18
REGIONAL ARCHAEOLOGICAL SEQUENCES .. 20
The Northwestern Canadian (Central Southwest Yukon) Archaeological Sequence 21
Discussion of Southwest Yukon Sequence .. 28
The Archaeological Sequence of Eastern Beringia (Central Alaska and Northwest Yukon) 30
Comparative Discussion of the Interior Southeastern Beringian Archaeological Sequence 38
Archaeological Sites within the Borderlands Region ... 40
2010 INVESTIGATIONS AT THE LITTLE JOHN SITE (KdVo-6) ... 44
LOCATION OF THE LITTLE JOHN SITE .. 44
HISTORY AND METHODS OF INVESTIGATIONS AT THE LITTLE JOHN SITE 46
GENERAL STRATIGRAPHY AT THE LITTLE JOHN SITE .. 52
RADIOCARBON DATES AT KdVo-6 ... 58
SUMMARY OF RECOVERED FAUNA ... 60
SUMMARY OF FEATURES FROM THE LITTLE JOHN SITE, 2010 .. 64
SUMMARY DESCRIPTION OF SELECTED LITHIC ARTIFACTS FROM THE LITTLE JOHN SITE, 2010 .. 71
Bifaces ... 71
Microblade Technology .. 78
Large Blade or Blade-Like Lithic Artifacts .. 81
Scrapers ... 83
Flake Debitage and Edge Modified – Retouched – Utilized Flakes ... 88
Pebble / Cobble Tools – Hammer Stones / Choppers / Split Pebbles / Anvils / Scraper Planes 93
Historic Remains ... 99
CONCLUDING REMARKS .. 99
REFERENCES .. 100

LIST OF TABLES
Table 1. Summary of 2010 Artifacts, KdVo-6 (n = 1108) ... 10
Table 2. Summary of 2010 Artifacts by Level and Type, KdVo6 ... 10
Table 3. Summary of 2010 Recovered Fauna, KdVo6 ... 11
Table 4. Canadian Archaeological Sites of the Yukon - Alaska Borderlands 42
Table 5. Radio Carbon Dates from the Little John Site .. 60
Table 6. Summary of Recovered Fauna by Level, KdVo6-2010 .. 61
Table 7. Count / Percentage of Recovered Fauna, All Units, KdVo6-2010 61
Table 8. KdVo6 - 2010 Archaeological Features by Unit and Stratum... 64
Table 9. Summary of Recovered Artifacts by Type and Stratum, KdVo6-2010................................. 71
Table 10. Raw Material and Metric Characteristics of Bifaces, KdVo6-2010.................................. 71
Table 11. Raw Material and Metric Characteristics of Microblades, KdVo6-2010........................... 79
Table 12. Large Blade Raw Material and Metrics, KdVo6-2010.. 81
Table 13. Raw Material and Metric Characteristics of Scrapers, KdVo6-2010............................... 83

LIST OF FIGURES

Figure 1. 2010 Field Crew Members traveling at their own risk.. 2
Figure 2. Chief David Johnny and Mackenzie Erskine at Ts’oogot Gaay fish camp......................... 8
Figure 3. Excavated Units, KdVo6, West Lobe.. 9
Figure 4. Excavated Units, KdVo6, East Lobe.. 9
Figure 5. Bessie Sam Johnny, Norm Easton, Wilfred Chasse, and Blake..................................... 11
Figure 6. Pleistocene Glacial Limits of the Southwest Yukon (prepared by the Yukon Geological
Survey based on most recent fieldwork in the region). ... 13
Figure 7. Distribution of the White River Ash fall, c. 1,900 and 1,250 years ago 16
Figure 8. Leek'ath Niik Village, Middle Scottie Creek... 17
Figure 9. Late Pleistocene - Early Holocene Archaeological Sites of the Western Subarctic........... 21
Figure 10. Little Arm Phase Artifacts.. 23
Figure 11. Annie Lake Points... 24
Figure 12. Taye Lake Phase Artifacts - Points, Bifaces, and Burins.. 25
Figure 13. Taye Lake Phase Artifacts - Scrapers, Bone Points, and Net Weight............................ 26
Figure 14. Aishihik Phase Artifacts.. 27
Figure 15. Technological Sequences for Southwest Yukon.. 28
Figure 16. Chindadn ("Ancestor") points from Healy Lake... 30
Figure 17. Dry Creek, Component I, Nenana Complex ... 31
Figure 18. Chindadn Bifaces of the Tanana Valley: Top - Healy Lake Chindadn, Middle - Swan
Point CZ 3, Bottom - Broken Mammoth CZ 3.. 33
Figure 19. Yubetsu Microblade Core Production on a Biface.. 34
Figure 20. Late Pleistocene - Early Holocene Culture History of Interior Alaska Proposed by
Holmes (2008).. 35
Figure 21. Microblade Technology from Component II (Denali Complex), Dry Creek Site......... 36
Figure 22. Bifaces from Component II (Denali Complex), Dry Creek site..................................... 37
Figure 23. General Location of the Little John Site, Yukon Territory, Canada.............................. 44
Figure 24. Aerial view of the Little John Site from the South... 45
Figure 25. Aerial view of the Little John site from the West.. 45
Figure 26. Aerial view of the Little John site from the Southwest... 46
Figure 27. Location of Excavation Units at the Little John Site, 2002-2010................................. 47
Figure 28. Representative Stratigraphic Profile, West Lobe.. 52
Figure 29. Representative Stratigraphic Profile, East Lobe... 53
Figure 30. Stratigraphic "Zones" of KdVo-6... 54
Figure 31. The Road Trench from the South and Detail of Paleosol complex at the North end of
the Road Trench.. 55
Figure 32. Detail of organic paleosol below massive loess, north end of Road Trench..................... 55
Figure 33. Unit N17W11 SW showing separation of Paleosol Complex strata............................... 56
Figure 34. Wood Fragments in N18 W11. L: SW Corner of Unit. R: Detail of Wood Fragments.

Figure 35. Selected Radiocarbon Dates at KdVo-6.. 57

Figure 36. Culturally modified Bison spp. vertebrae remains in situ, loess below paleosol
stratum, dated to 12020 radiocarbon years or c. 14,000 calendar years before present. 58

Figure 37. Proximal Innominate (illium) of Wapiti dated to 10960 +/- 30 RYBP - 12885 +/-
91 Cal YBP from Loess below Paleosol, N13W02 – Fa 2006-41 (n.b. number in photo is field
number).. 59

Figure 38. Examples of Fauna Remains from Upper Levels, KdVo6-2010. L: Fa10-75-79; R:
Fa10-95-99.. 62

Figure 39. Bison Metapodial from N19W12, LbPC at 79 cm below surface......................... 62

Figure 40. KdVo6: Fa10-12, Medial Aves Long Bone Fragment, N15W12, P4.................. 63

Figure 41. KdVo6: Fa10-40 - Fa10-44, Bird Bone Fragments from Unit N19W08, PC3 - P4... 63

Figure 42. Vertical Plan of KdVo6 - Feature 10-11, Log Cache / Cabin, NE Site Quadrant..... 65

Figure 43. Horizontal Plan, KdVo6-Feature 2010-01 Historic Planks, S13W14................. 66

Figure 44. Oblique Vertical Photo, KdVo6-Feature 2010-01 Historic Planks, S13W14....... 66

Figure 45. KdVo6-Feature 2010-02, Pebble / Cobble Complex, S14W14, B1 Stratum......... 67

Figure 46. Overview - Feature 2010-19, Hearth in N15W11SE (L unit), Upper Paleosol (P2)
from the North... 68

Figure 47. Unit View - Feature 2010-19, Hearth in N15W11SE, Upper Paleosol (P2), from the
North .. 68

Figure 48. Detail View - Feature 2010-19, Hearth in N15W11SE, Upper Paleosol (P2), from the
North .. 69

Figure 49. KdVo6 Feature 2010-20, Cobble and Pebble Concentration, N15W12 (R unit),
Middle Paleosol Complex (P3), from the North.. 69

Figure 50. KdVo6 Feature 2010-20, Oblique View, Cobble and Pebble Concentration, N15W12,
Middle Paleosol Complex (P3)... 70

Figure 51. KdVo6:2591, Proximal Biface Fragment, S12W19 B2.. 72

Figure 52. KdVo6:2661, Proximal Biface Fragment, S14W13, B2.................................... 73

Figure 53. KdVo6:2709 Complete Corner Notched Biface, S16W15, B2.......................... 73

Figure 54. KdVo6:2784, Biface Fragment, S14W14, Loess level.. 74

Figure 55. KdVo6: 2921, Broken Biface, S14W18, Loess Stratum.................................... 74

Figure 56. KdVo6:3084, Bifacially Worked Split Cobble, N15W12, B2 Stratum................. 75

Figure 57. L: KdVo6:2697. Asymmetrical Biface on Brown Chert, N01W09, B2 Stratum.... 75

Figure 58. KdVo6:2716 Contracting Stemmed Biface on Chert, S13W14, B2 Stratum....... 76

Figure 59. KdVo6:2775, Distal Biface Fragment, S11W13, B2 Stratum............................. 76

Figure 60. KdVo6:2618, Obsidian Biface Fragment from Unit S13W14, B1 Stratum......... 77

Figure 61. KdVo6:2706, Obsidian Biface Fragment from Unit .. 77

Figure 62. KdVo6:2773 / 2774, Refitted Complete Obsidian Biface, S16W15, B2 Stratum..... 78

Figure 63. Microblade Distribution in B2 Stratum, SW Quadrant (West Lobe), KdVo6-6-2010. 79

Figure 64. Selected Microblade Fragments, KdVo6-2010. L-R: 2633, 2858, 2640............. 80

Figure 65. Selected Microblades, KdVo6-2010. L-R: 2633, 2721, 2915............................ 80

Figure 66. KdVo6:2568 Microblade Core Fragment / Tablet, S14W14, B2 Stratum............. 80

Figure 67. KdVo6:2590, Obsidian Blade, S12W19, Base of B2 Stratum............................ 81

Figure 68. KdVo6:2703, Retouched Jasper Blade, S13W13, Loess Stratum...................... 82

Figure 69. KdVo6:2845, Blade-like Flake on Chert, S12W13, B2 Stratum....................... 82

Figure 70. KdVo6:2607, Scraper / Plane on Obsidian Flake Core, Unit S16W17, B2 Stratum... 84
Figure 71. KdVo6:2705, Obsidian Multi-Scraper, S16W15, Low B2 / Loess 84
Figure 72. KdVo6:2159 (Top R) and KdVo6:2165, S15 W16 ... 85
Figure 73. KdVo6:2636, End Scraper on Dark Brown Chert, S13W14, B2 Stratum 86
Figure 74. KdVo6:2672, End Scraper on Jasper Flake, S14W13, B2 Stratum 86
Figure 75. KdVo6: 2711/2841/2710, Large Side Scraper on Basalt Blade-like Flake, S13W13, Loess Stratum (West Lobe) ... 87
Figure 76. KdVo6:2615 in situ, Vertically Inclined from Loess into B2 87
Figure 77. KdVo6:2567, Edge Modified Flake on Grey Chert, S14W14, B2 Stratum 89
Figure 78. KdVo6:2596, Edge Modified Flake on Grey Chert, S12W19, B2 Stratum 89
Figure 79. Edge Modified Flakes, L: KdVo6:2730, S13W19, B2 R: KdVo6:2899, N9W9, B2 . 89
Figure 80. KdVo6:2878, Unifacial Retouched Flake, S15W13, B2 Stratum 90
Figure 81. KdVo6:2656, Spall on Grey Chert, S14W13, B2 Stratum 90
Figure 82. KdVo6:2837, Basalt Lot of Debitage Waste Flakes, S13W13, B2 Stratum 91
Figure 83. KdVo6:2815, Obsidian Thinning Flake, S11W13, Loess Stratum 91
Figure 84. KdVo6:2972, Lot of Grey Chert Flakes, S16W15, Loess Stratum 91
Figure 85. KdVo6:2973, Lot of Basalt Flakes, S16W15, Loess Stratum 92
Figure 86. KdVo6 Flakes from the East Lobe Paleosol Complex Strata, N15W2 (3114 - 15, 3117 - 19) ... 92
Figure 87. KdVo6:2548 Cobble Hammer Stone, S14W14, B1 Stratum 94
Figure 88. KdVo6:2550, Cobble Hammer Stone, S14W14, B1 Stratum 94
Figure 89. KdVo6:2554, Cobble Anvil / Hammer Stone, S14W14, B1 Stratum 94
Figure 90. KdVo6:2555, Cobble Hammer Stone / Boiling Stone, S14W14, B1 Stratum 95
Figure 91. KdVo6:2556, Cobble Anvil / Hammer Stone, S14W14, B1 Stratum 95
Figure 92. KdVo6:3047, Anvil Stone / Boiling Stone, N19W12, B2 Stratum 95
Figure 93. KdVo6:3048, Cobble Anvil / Boiling Stone, N19W12, B2 Stratum 96
Figure 94. KdVo6:3049, Cobble Hammer / Anvil Stone, N19W12, B2 Stratum 96
Figure 95. KdVo6:3050, Pebble Hammer / Boiling Stone, N19W12, B2 Stratum 96
Figure 96. KdVo6:3051, Cobble Hammer / Boiling Stone, N19W12, B2 Stratum 97
Figure 97. KdVo6:3052, Pebble Hammer / Boiling Stone, N19W12, B2 Stratum 97
Figure 98. KdVo6:2648, Hammer Stone, S13W14, Loess Stratum 98
Figure 99. KdVo6: 2649, 2650, 2651, Hammer / Anvil / Boiling Stones, S13W14, Loess Stratum ... 98
Figure 100. KdVo6-2010 Historic Remains ... 99

Print Appendices

1. 2010 Recovered Artifacts, KdVo6 by Unit, Level, Type, and Material
2. 2010 Artifact Catalogue, KdVo6
3. 2010 Recovered Fauna, KdVo6 by Unit, Level, Order
4. 2010 Fauna Catalogue, KdVo6
5. 2010 Related Publications / Presentations
2008 Excavations at the Little John Site (KdVo-6), Southwest Yukon Territory, Canada

SUMMARY OF ACTIVITIES

With the permission and support of the White River First Nation, archaeological and ethnographic research was undertaken under the direction of Norman Alexander Easton between June and August, 2010 in the region about Beaver Creek, Yukon Territory.

1. Principal activities in 2010 included:
 • Continued excavation of KdVo-6, The Little John Site
 • Training of ten full-credit field school students for six weeks, two Graduate student participants, five student interns, and five WRFN youth workers.

Major Results of this fieldwork included:
 • Excavation of 32 one metre units indicated in blue in Figures 3 and 4 below.
Figure 3. Excavated Units, KdVo6, West Lobe

Figure 4. Excavated Units, KdVo6, East Lobe
- Recovery of 1108 additional artifacts from the Little John site, summarized in Tables 1 and 2, below.

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biface</td>
<td>13</td>
<td>1.17%</td>
</tr>
<tr>
<td>Blade</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Microblade</td>
<td>18</td>
<td>1.62%</td>
</tr>
<tr>
<td>Microblade Core</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Core Tablet</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Scraper</td>
<td>10</td>
<td>0.90%</td>
</tr>
<tr>
<td>Bone Tool</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Flakes</td>
<td>872</td>
<td>78.70%</td>
</tr>
<tr>
<td>Hammerstone</td>
<td>33</td>
<td>2.98%</td>
</tr>
<tr>
<td>Cobble / Pebble</td>
<td>113</td>
<td>10.20%</td>
</tr>
<tr>
<td>Fire Altered</td>
<td>18</td>
<td>1.62%</td>
</tr>
<tr>
<td>Historic</td>
<td>14</td>
<td>1.26%</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>0.72%</td>
</tr>
</tbody>
</table>

Grand Total: 1108 (100.00%)

Table 1. Summary of 2010 Artifacts, KdVo-6 (n = 1108)

<table>
<thead>
<tr>
<th>Site</th>
<th>(All)</th>
<th>Site Quad</th>
<th>(All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary</td>
<td>Level</td>
<td>O / A</td>
<td>B1</td>
</tr>
<tr>
<td>Artifact Type</td>
<td>Level</td>
<td>O / A</td>
<td>B1</td>
</tr>
<tr>
<td>Biface</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blade</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Microblade</td>
<td>O</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Microblade Core</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Core Tablet</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scraper</td>
<td>O</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bone Tool</td>
<td>O</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Flakes</td>
<td>O</td>
<td>9</td>
<td>19</td>
</tr>
<tr>
<td>Hammerstone</td>
<td>O</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Cobble / Pebble</td>
<td>O</td>
<td>23</td>
<td>4</td>
</tr>
<tr>
<td>Fire Altered</td>
<td>O</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Historic</td>
<td>O</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>O</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Grand Total: 43 (37 | 16 | 773 | 136 | 4 | 53 | 22 | 3 | 1108 | 100%)

Table 2. Summary of 2010 Artifacts by Level and Type, KdVo6

- Recovery of 150 additional faunal remains summarized in Table 3, below.
Table 3. Summary of 2010 Recovered Fauna, KdVo6

- Additional infrastructure (boardwalks, stairways) was added to the Little John site with the support of material supplied by Joe Young of Young’s Timber, Tok, AK.
- Finally, we were graced with the opportunity to host the marriage of Bessie Sam Johnny and Wilfred Chasse at the Little John site. “I’m starting a new generation of my people,” Bessie explained to me, “and I think I should do this surrounded by my ancestors.” The day was an unforgettable event, attended by over a hundred relations and friends of the couple, and a remarkable testimony to the continued importance of the Little John site in the contemporary life of the White River First Nation.

<table>
<thead>
<tr>
<th>Fauna</th>
<th>Level</th>
<th>O / A</th>
<th>B1</th>
<th>B2</th>
<th>PSC</th>
<th>LbPSC</th>
<th>Grand Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bison</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td>8.00%</td>
</tr>
<tr>
<td>Caribou</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>2.00%</td>
</tr>
<tr>
<td>Pig</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mammal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>6.00%</td>
</tr>
<tr>
<td>Small Mammal</td>
<td>44</td>
<td>11</td>
<td>5</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>97</td>
<td>64.67%</td>
</tr>
<tr>
<td>Med Mammal</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>4.67%</td>
</tr>
<tr>
<td>Large Mammal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2.00%</td>
</tr>
<tr>
<td>Bird</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td>8.67%</td>
</tr>
<tr>
<td>Med Bird</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>2.67%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>47</td>
<td>12</td>
<td>5</td>
<td>35</td>
<td>38</td>
<td>13</td>
<td>150</td>
<td>100%</td>
</tr>
</tbody>
</table>

Figure 5. Bessie Sam Johnny, Norm Easton, Wilfred Chasse, and Blake.
• At the request of Bob Sattler of the Tanana Chiefs Conference, we undertook an archaeological survey of a Native Allotment at Healy Lake, AK, identifying a new 13,100 occupation on the allotment at the Linda Point Site (see Sattler, Gillespie, Easton, and Grooms, 2011 and accompanying PDF of our PowerPoint presentation in the Appendix).

• Six public presentations related to the project were delivered in the past year (Alaska Anthropological Association (2 papers), Whitehorse Lions Club, Yukon College, University of British Columbia, and Simon Fraser University).

• Two chapters summarizing lithics and fauna recovered from Little John were published in the most recent synthesis of Beringian archaeology (Easton, et al. 2011; Yesner et al. 2011). Three papers (on obsidian sourcing, place names, and the ethnographic construction of ethnic boundaries and borders) are in development.
REGIONAL CONTEXT OF THE AREA OF STUDY

GLACIAL HISTORY AND PALEOECOLOGY OF THE STUDY REGION

Figure 6. Pleistocene Glacial Limits of the Southwest Yukon (prepared by the Yukon Geological Survey based on most recent fieldwork in the region).
Pleistocene glacial advances in the Mirror Creek and adjacent Tanana valleys were thin piedmont glaciers extending from the Nutzotin – Wrangell – St. Elias Mountain chain, which rise about forty kilometers to the southwest of the site. The Little John site lies at the edge of the maximum extent of the Mirror Creek glacial advance (corresponding to the central Yukon’s Reid and North American Illinoian glacial events), variously dated to the Late Illinoian – MIS 6, c. 14,000 BP (Bostock 1965; Krinsley 1965) or the Early Wisconsin – MIS 4, c. 70,000 BP (Denton 1974; Hughes et al. 1989).

However the Late Wisconsin advance of glacial ice, identified locally as the McCauley glacial advance (corresponding to the central Yukon’s McConnell and the North American Wisconsin glacial periods), ended at McCauley Ridge, some fifty kilometers to the southeast, and began a rapid recession at about 13500 BP; by 11000 BP the region was ice-free to at least the White River, some 150 kilometers to the southeast (Rampton 1971).

Thus, the Little John Site lies within the ice free lands of Beringia. Paleontological data compliments the geological evidence. This includes a fragment of ivory from a scatter of this material found eroding from the hillside across the highway from the Little John site, which has been AMS dated to 38160 +/- 310 RCYBP; presumably it is from *Mammuthus*, although we have not undertaken any DNA analysis to confirm this. However, combined with the recovery of additional Pleistocene fauna in the area representing specimens of *Bison, Equus, Mammuthus, Rangifer*, and possibly *Saiga*, including an *Equus lambei* specimen, recovered about two km from the site, which has been radiocarbon dated to 20660 +/- 100 RCYBP (Beta 70102; MacIntosh 1997:84), these non-cultural fauna confirm that the area about the Little John site supported a range of mega-fauna during the mid to late Wisconsin glacial period from at least 38,000 years ago.

Several palaeo-ecological studies have been carried out in the region, which allow us to reconstruct the local post-glacial environmental history of the past 13,000 years or so. Rampton (1971b) analyzed sediments from Antifreeze Pond, just south of Beaver Creek, while MacIntosh (1997) examined sediments from "Daylight Coming Out" Lake (Upper Tanana = *Yikahh Männ’*) just north of Beaver Creek and the uppermost lake on the Little Scottie Creek drainage, and "Island" Lake (Upper Tanana = *Cha’atxxaa Männ’*), which lies just over the Alaska border and drains into Big Scottie Creek via Desper Creek. The results of these two studies were in general
agreement, differing slightly in some aspects of dating and environmental indicators. In combination they present us with the following palaeo-environmental reconstruction:

Herb-Tundra Steppe Zone

The late glacial environment of between 13,500 to 11,000 years ago was dominated by grasses (*Gramineae*), sage (*Artemisia spp.*), willow (*Salix spp.*) and sedges (*Cyperaceae*), equivalent to that of the predominantly herbaceous tundra steppe zone proposed for much of eastern Beringia at the end of the Wisconsin glaciation.\(^1\) MacIntosh estimates minimum July temperatures of five degrees Celsius.

Birch Rise

The period between 11,000 and 8,000 years ago is marked by a significant (up to seventy-five percent of the pollen record) increase in birch (*Betula spp.* - predominantly dwarf birch - *Betula pumila* var. *glandulifera*), with a slow decline in the levels of *Artemisia*. These data suggest a continuing warming climate to at least a minimum mean July temperature of nine degrees Celsius. A rise in aquatic plants and algae is also noticeable in the pollen record, suggesting increased moisture and precipitation, as well as a general reduction in erosion and accompanying stabilization of the landscape.

Spruce Rise

This is a relatively short period, which is marked by the first appearance of spruce (*Picea spp.*) in the region. It is also one which different localities present different time depths. Rampton's estimates for Antifreeze Pond place the onset of spruce at about 8,700 years ago; MacIntosh's data from *Yihkah Männ'* place it at between 7,400 and 8,400 years ago. Birch and willows retain the high values of the previous period however, while other taxa are greatly reduced. The presence of spruce suggests a minimum mean July temperature of thirteen degrees Celsius.

Spruce Zone

After about 7,500 years ago, spruce becomes predominant within the pollen record in the region, with an accompanying dramatic decrease in the presence of birch and willow. Sphagnum pollen also rises noticeably, with a corresponding decrease in aquatic species. These data suggest at least maintenance of minimum mean July temperatures of thirteen degrees Celsius.

\(^1\) There is not unanimous agreement on Wisconsinan Beringian environments, but I follow the position set out by Guthrie (1990) on the matter, which argues for a productive "mammoth steppe".
Alder Zone
A rise in alder (*Alnus spp.*) is found at about 5,400 years ago at *Yihkah Männ’*, and 5,600 at Antifreeze Pond; both suggest an increase in relative moisture in the region at about this time to about present levels. Both Rampton and MacIntosh interpret their data as indicating the onset of an environment generally similar to that of today, with the exception of a gradual rise in mean annual July temperatures to its contemporary level of about twelve degrees Celsius.

It was during this last period that the region experienced the ash fall from two major volcanic eruptions near Mounts Churchill / Bona, near the headwaters of the White River. The figure below shows the limits of the two ash falls.

![Figure 7. Distribution of the White River Ash fall, c. 1,900 and 1,250 years ago.](image)

(from Smith et al. 2004:28)

The first, smaller eruption occurred at about 1,900 years ago; the majority of ash was deposited northward from the eruption. The second, larger, eruption occurred at about 1,250 years ago; the ash fall from this eruption was carried eastward to beyond the Yukon - Northwest Territory border (Lerbekmo et al. 1975); more recent analysis of peat deposits has extended its distribution as far east as the shores of Great Slave Lake, 1300 km from the source. This
expanded distribution encompasses about 540,00 km2, representing a tephra volume of 27 km2 (Robinson 2001). The effect of these ash falls must have been significant for both the environment and the humans living in the region (Workman 1974). Moodie and Catchpole (1992), and others (Derry 1975, Ives 1990, 2003, Matson and Magne 2007), suggest that this may have been the impetus for the migration of the Athapaskan speaking ancestors of the Navaho and Apachean peoples into the American southwest desert lands. Ives (2003:267) notes that

the clear recognition of two separate White River events enhances the tie between Athapaskan language history and volcanic history. The north lobe White River event (ca. 1900 B.P.) corresponds in time with the intermontane and coastal migrations of the Pacific Coast Athapaskans that Krauss and Golla (1981) felt took place before 1,500 B.P., while the east lobe event corresponds with the divergence of Canadian and Apachean Athapaskans after about 1,200 B.P. It seems unlikely that these two episodes of language divergence, in their correspondence with two volcanic events of stupendous ecological moment, would arise purely as a matter of coincidence.

Interestingly, Easton was told by several Upper Tanana Elders that the traditional village site of Leek’ath Niik / muddy water creek /, which lies on the eastern side of the middle Scottie Creek valley, was the location to which their ancestors retreated at the time of the eruption and subsequent ash fall - a time referred to in their oral history as the year of two winters.
After the last eruption about 1,200 years ago the region's environment has been relatively stable, although fluvial erosion and redeposition of sediments, as well as localized mass wasting of hillsides, continued.

CONTEMPORARY ENVIRONMENTAL ECOLOGY OF THE STUDY REGION

From a contemporary perspective, Oswald and Senyk's (1977) categorization of the eco-regions of the Yukon place the southwest Yukon and the adjacent Upper Tanana valley within the eastern portion of their "Wellesley Lake Eco-Region" (pp. 42-45; see also Smith et al. 2004).

The surface of the valley floors are characterized by extensive meandering streams across boggy, largely permafrost muskeg. Though technically discontinuous, permafrost is extensive and can reach as deep as thirty meters (Rampton 1980). Frozen ground features include fen polygons, stone nets, felsenmeer, solifluction lobes and stripes, and rock rivers.² Loess (wind blown) sediments and volcanic ash deposits, both of which can reach over 50 cm in depth, are also found throughout the region (Oswald and Senyk 1977).

Today the ground is covered with sphagnum mosses, sedges, blueberry, bearberry, Labrador tea, and is dotted with remnant oxbows and a plethora of small lakes ringed with willows. Black spruce bowers and scattered growth of dwarf birch, alder, and willow crowd any rise in the valley landscape, which are often elevated frost mounds, shading ground patches of cranberry and wild rose. The surrounding hillsides support alternating patches of white and black spruce, birch, alder, aspen, and poplar trees and a wide variety of shrubs, up to their low summits. Due to the near surface presence of permafrost, north-facing hillsides are predominantly black spruce. Many of these plants were and continue to be used by *Dineh* of the region (see Easton 2004b).

² All of these surficial features are directly related to permafrost conditions:
- Fen polygons are peatlands with slowly moving water above or below the surface, commonly supporting grasses, sedges, cottongrass, burrushes, and reeds, on patterned ground, roughly polygonal in shape.
- Stone nets are characterized by fine-grained soils in the centre and coarse-grained, stony materials found on the rim of patterned ground intermediate between sorted circles and sorted polygons.
- Felsenmeers are chaotic assemblages of fractured rocks resulting from intensive frost shattering of jointed bedrock.
- Solifluction lobes and stripes are two forms of surficial sediment deposits which have resulted from the slow, gravitational downslope movement of saturated, unfrozen sediments moving as a viscous mass over a surface of frozen material (Oswald and Senyk 1977).
Despite the abundance of water in the region, the humidity is low. This is because the lowland bogs are more a function of the low relief and summer solar thaw of the fifty or so centimeters of soil above the permafrost than of precipitation, which averages only about 30cm per year. Seasonal variation in temperatures is extreme, ranging from -57 degrees Celsius or greater in the winter to the low 30s in the summer. The mean low temperature is -31 degrees Celsius in January, the mean high temperature is 12 degrees Celsius in July, and the annual mean temperature is -6 degrees Celsius. (The lowest recorded temperature for North America was recorded at nearby Snag, Yukon on 3 February 1947 of -62.8 degrees Celsius (-81 degrees Fahrenheit). Cloud coverage is relatively high, averaging overcast for 27% and broken for 30% of the year (Wahl et al. 1987).

The low mean temperatures combined with the low solar values associated with the high cloud cover, result in long winters with lakes and streams frozen from October to mid-May (Hosley 1981a). And while the depth of snow is never very deep, it can come as early as September and remain on the ground until May. As a result, the seasons of spring and fall are short, while the difference between winter and summer might best be summed up as frozen or wet.

In the present, the basin supports a wide range of fish species, large and small mammals, and is an important component of the interior western continental flyway; in Alaska the lower Chisana River basin is completely within the Tetlin National Wildlife Refuge, while the upper portion lies in Wrangell-St.Elias National Park and Preserve.

Dominant large mammals include moose (Alces alces), black and brown (grizzly) bear (Ursus americanus and Ursus arctos), mountain sheep (Ovis dalli), and caribou (Rangifer tarandus) of the Chisana and Forty-Mile Caribou Herds.

Furbearers include wolf (Canis lupus), lynx (Lynx canadensis), wolverine (Gulo gulo), beaver (Castor canadensis), muskrat (Ondatra zibethica), otter (Lontra canadensis), and the snowshoe hare (Lepus americanus).

Pre-eminent among the fish species are whitefish (Coregonus sp.), grayling (Thymallus arcticus), pike (Esox lucius), sucker (Catostomus spp.), and lingcod [burbot] (Lota lota). Salmon is also available to the region from fishing localities on the White and Yukon Rivers, as well as through reciprocity with relatives living in the Copper River watershed and in the Dawson region.
Like the plants, most all animals were integrated into Upper Tanana culture. All retain an important social and spiritual relationship to people - the Dineh culturally categorize animals as non-human persons with cognitive and moral purpose - and many were important components of the aboriginal technology and subsistence systems (see Nadasdy 2007; Easton 2008b).

REGIONAL ARCHAEOLOGICAL SEQUENCES

The ancient Beringian environment which prevailed in the Borderlands during the last glacial maximum, some 27,000 to 12,000 years ago during the late Pleistocene geological epoch, and the general environmental changes which occurred in the region over the past 11,000 years of the subsequent Holocene epoch was presented above. There is widespread agreement on the presence of human societies occupying eastern Beringia during the final millennia of the Pleistocene and the early Holocene Epochs. Currently there are two regional schemes that prevail in our understanding. The first is one that was developed to account for the prehistory of glaciated Yukon; the second is one that was developed to account for the prehistory of unglaciated eastern Beringia (central Alaska and western Yukon). In order to provide a larger context to the material recovered from the Little John site, I present first the northwestern Canadian (glaciated Yukon) archaeological sequence, followed by a presentation of the eastern Alaskan sequence, and then a comparative discussion of both archaeological sequences, which relates one to the other. Finally, I discuss specific archaeological sites within the local area of the Borderlands to contextualize the Little John site in a regional perspective.

From the pan-regional perspective of Northwestern North America, it is clear that there must be some technological and cultural relationship between the Alaskan and Yukon sequences. Indeed, the Little John site, along with others in the Borderlands area, are well placed geographically and chronologically to provide the archaeological data to link the two separate

3 I am leaving aside discussion of the proposed early (20,000 years +) cultural tradition based on a bone tool technology proposed by Jaques Cinq-Mars, and Richard Morlan (Cinq-Mars and Morlan 1982) for unglaciated northeastern Beringia in the Old Crow River Basin of northern Yukon. The archaeological evidence for this early culture is equivocal at best and not generally accepted by the majority of archaeologists, including myself. The demonstrable late Pleistocene – early Holocene (circa 11,000 years ago) microblade and burin component of the Blue Fish Caves assemblage in the Old Crow basin is variously assigned to the Paleo-Arctic, Denali, Beringian, or Dyuktai archaeological traditions which are discussed below (c.f. Fagan 1987:122-127; Dixon 1999:58-61).
sequences, which to date have been geographically separated by hundreds of kilometers and nationalist driven definitions.⁴

The Northwestern Canadian (Central Southwest Yukon) Archaeological Sequence

![Map 4. Ancient Sites in the Northwestern Area, 11,500 to 7,000 Years Ago](image)

Interestingly, Carlson (2007) goes even further, linking the early Borderlands archaeological culture with that of the early Northwest Coast.

⁴ Interestingly, Carlson (2007) goes even further, linking the early Borderlands archaeological culture with that of the early Northwest Coast.
The map above shows the general location of most western subarctic archaeological sites of the late Pleistocene and early Holocene (from as early as 14,000 years ago at the Swan Point [next to # 26, Broken Mammoth] and Little John sites to about 8,000 years ago). Based on current knowledge, the archaeological sequence for the glaciated Yukon first proposed by Workman (1978) has been refined by the recognition of a non-microblade Northern Cordilleran Tradition in the early Holocene (Clark 1983), a mid-Holocene “Annie Lake” technological complex of small, deeply concave-based lanceolate points (Greer 1993; Hare 1995), and the combining of Workman's Aishihik and Bennett Lake phases into a Late Prehistoric period. Each of these archaeological cultures are discussed in more detail below.

Northern Cordilleran Tradition

Lasting from at least 10,000 years ago to about 7,000 years ago, this tradition is characterized by large straight and round-based lanceolate point forms, large blades and flakes, and transverse notched burins. Significantly the assemblage lacks microblade technology (Clark 1983). The climate at this time shifted from the colder and dryer climate associated with the terminal glacial period to increasing warming throughout (from a mean July temperature of 5.5 to 7.2 degrees Celsius to 7.2 to 9.9 degrees Celsius), while the vegetation seems to have been dominated by shrub tundra. Representative site components of this tradition include the basal levels of the Canyon (JfVg-1) and Annie Lake (JcUr-3) sites, and the Moosehide (LaVk-2) site.

As discussed by Hare (1995), two possible sources for this tradition have been proposed. The first, following Clark (1983, 1992) is derived from populations of the Cordillera geophysical region, themselves derivative from late Paleoindian Plano peoples of the northern prairies, which co-existed with microblade making populations entering the Yukon from the northwest. However, Hare (1995:131) suggests that,

“given the broad morphological similarities between blades from Annie Lake and those for the 11,000 BP Nenana Complex (discussed below and Goebel et al. 1991) and the apparent dissimilarities with the Early prehistoric period, Clovis-like blades of northern Alberta (see Le Blanc and Wright 1990), it is unlikely that the Northern Cordilleran Tradition is derived from southern-based Plano influences. Instead, it is probable that the roots of Northern Cordilleran are to be found in the indigenous northwestern Paleoindian tradition” – which I take to mean the northern Brooks Range assemblages such as those found at Mesa (Kunz et al. 2003), Putu, Bedwell and Hilltop sites, and Spein Mountain in the lower
Kuskokwim River basin (Ackerman 2001), collectively grouped within the Mesa complex (Kunz and Reanier 1994; see also Hoffecker 2011).

Little Arm Phase or Northwest Microblade Tradition

Lasting from about 7,000 to 8,000 years ago to about 4,500 to 5,000 years ago, this tradition is characterized by composite tool production using small blades or microblades, multiple gravers and burins, round-based projectile points, and a variety of end and side scrapers (Workman 1978). The Little Arm site (JiVs-1) on Kluane Lake is the type site of this regional phase and sites of this type and period are found everywhere throughout the southwest Yukon, many of which might also include some notched points (although Workman, 1978, would disagree with including such sites on that basis). The climate during this time continued to become warmer than today's average temperatures, while the vegetation shifted from shrub tundra to a spruce forest ecosystem.

![Figure 10. Little Arm Phase Artifacts](from Workman 1978)
The Northwest Microblade Tradition (NWMt) as proposed by MacNeish (1964) included both wedge-shaped microblade cores and side notched points. It was seen by some as attempting to embrace far too many regional phases over too great a geographic area (from the Mackenzie River basin to Fairbanks) to have any great utility. More recently, its use has been resurrected by some in the Canadian northwest as representative of a merging of microblade technology diffused from Alaskan (and ultimately east Asian) origins and combined with the developing indigenous Yukon-Northwest Territories-based Northern Cordilleran tradition (Wright 1995; Clark et al. 1999). Clark et al. (1999:175) suggests that:

The genesis of the Northwest Microblade Tradition, at least its microblade industry and possibly also its burins, lies in the spread of Denali culture to the Yukon about 7,000 or 8,000 years ago [after deglaciation] and its further, later, spread into the District of Mackenzie and adjacent areas of British Columbia and Alberta [that] resulted in considerable heterogeneity. . . . The Northwest Microblade Tradition should be viewed as a frontier culture [in the Cordillera] vis-à-vis the Denali focal region.

Annie Lake Complex

Lasting from about 6,900 to about 2,900 years ago, this complex is characterized by projectile points - called Annie Lake Points - which are relatively small (3.5 to 4.25 cm), basally thinned (or "deeply concaved lanceolate" in Greer's (1993) morphological description), and additional lithics which are “characterized by thin, well made tools of high quality raw materials, with a debitage suggesting extensive curation and maintenance of tools (Hare 1995:132).

![Figure 11. Annie Lake Points](N. A. Easton)

To date these points have been exclusively located in the Southern Lakes region around Whitehorse, Yukon. The Annie Lake Complex is found stratigraphically above microblade-
bearing horizons of the NWMt and below Taye Lake Phase or Northern Archaic Tradition horizons. Temporally, however, it lies astride both the preceding and following tradition, leading Hare (1995:121-2) to suggest that it may represent “a small colonizing population . . . or, and perhaps more likely, the Annie Lake complex represents diffusion of early Northern Archaic traits into an indigenous microlithic tradition.”

Taye Lake Phase or Northern Archaic Tradition or Middle Prehistoric Period

Lasting from about 4,500 to 5,000 years ago to about 1,250 years ago, this archaeological culture is characterized by the introduction of a variety of side-notched and stemmed spear and atlatl points (Anderson 1968a, 1968b; Workman 1978), a range of scraper forms, net weights, and a notable increase in the recovery of bone artifacts of a variety of functions (although this last attribute may be a function of preservation, and the percentages of bone artifacts within the entire assemblage is less than that found in the subsequent Late Prehistoric period). At some sites microblades are found as well (c.f. Clark et al. 1999). A cooling and moister climate begins this period, with a neo-glacial period at about 2,600 years ago, followed by a drier climate at its terminus. Vegetation was similar to that of today.

Figure 12. Taye Lake Phase Artifacts - Points, Bifaces, and Burins

(from Workman (1978)
Both Anderson and Workman noted that the lithic artifacts at this time become increasingly crude in their workmanship, with little retouch flaking and dominated by poor, coarse-grained materials. This fact, combined with the general expansion in the size and diversity of the overall toolkit, is interpreted to represent a population that has adapted and expanded its comfortable adaptation to the boreal forest landscape to include a wider variety of subsistence technology and resources, perhaps with an increased emphasis on bone technology and a reduction in lithic technology.

Aishihik Phase - Late Prehistoric Period
Lasting from about 1,250 to about 200 years ago, this archaeological culture (Workman 1978) is essentially Northern Archaic, but differentiated from the Taye Lake phase by its presence above the White River Volcanic ash fall - Taye Lake material is below the ash. It is characterized by increased use (or perhaps only archaeological recovery) of bone and antler tools, native copper
implements, and small-stemmed projectile points (Kavik or Klo-kut points⁵). While initially cooling and moist, the climate became warmer at the end of this period and the vegetation was not significantly different from today.

Interestingly, recent dating of a large number of well-preserved atlatl darts and bow arrows found in melting ice patches in the southwest Yukon has revealed that the bow and arrow is exclusively an Aishihik Phase technology in the southwest Yukon (Farnell et al. 2005; Hare et al. 2004). Such a correlation between the second White River Volcanic ash fall and the introduction of the new bow and arrow technology replacing the longstanding atlatl is suggestive of a brief period of rapid population displacement and replacement, although undoubtedly of the same Athapaskan language family.

Bennett Lake Phase - Late Prehistoric

Lasting from about 200 years ago to this century, this archaeological culture (Workman 1978) is characterized by the introduction of European trade goods and their integration into aboriginal technology, and is prior to the full encapsulation and transformation of aboriginal technology into its modern form. Expedient lithic tools such as simple cobble scrapers (Upper Tanana = _thi-

⁵ These stemmed points may have tapered or shouldered bases; see Campbell 1968, Morlan 1972, Shinkwin 1978.
chos), choppers, bipolar flakes, scrapers made from bottle glass and strips of metal, fish-hooks made from nails, and bunting arrow points made from spent cartridges are common at sites such as those at Dawson-Tr'očhek (Hammer 2001), Fort Selkirk (Easton and Gotthardt 1987, Gotthardt and Easton 1988), and the Scottie Creek valley (Easton 2002b).

Discussion of Southwest Yukon Sequence

![Table 6. Technological Sequences for Southern Yukon](image)

Figure 15. Technological Sequences for Southwest Yukon (from Hare 1995)

The figure above presents a summary of the technological sequence of the southwest Yukon discussed in the previous section. There is no doubt that there is direct historic continuity between the contemporary inhabitants of the southwest Yukon and the people of the Bennett Lake phase. Similarly there is a direct connection between the people of the Bennett Lake phase and the preceding Aishihik, since the only defining difference is the introduction of European
trade goods. This connection is reflected in contemporary archaeologists' movement away from the use of these phase names towards a more regional and generalized Late Prehistoric categorization with clear affiliations to modern Athapaskan groups (c.f. Greer 1983; Gotthardt 1990; Hare 1995:125).

The relationship between the Late Prehistoric period and the preceding periods is summed by Hare (1995:17):

As outlined by Workman, most researchers agree that the Northern Archaic and Northwest Microblade traditions gradually evolved into the Late Prehistoric Athapaskan Tradition and while there was considerable regional variability there is evidence for continuity in terms of technology, settlement and subsistence patterns.

In years past, some archaeologists had suggested that the changes in technology between the Microblade and Northern Archaic periods reflected the migration of new culture-bearing people into the region (see especially Anderson 1968 and Workman 1978).

However, many archaeologists now favor models of population continuity in this period as well and suggest the possibility that the principal factor in these changes has been necessary adaptations to changes in the environment or the result of indigenous populations adapting diffused technological elements of neighbouring cultures (see, for example, Clark and Morlan 1982; Morrison 1987; Clark 1992; Hare 1995:16-17). Furthermore, Hare and Hammer (1997) have shown that the temporal range of microblades within the Yukon has more components outside the proposed range of the Northwest Microblade tradition than within it (see also Clark et al. 1999). Thus, for example, Morrison (1987) prefers the use of the term *Middle Prehistoric period* over that of the *Northern Archaic Tradition* in the Mackenzie and eastern cordilleran regions, while Clark and Morlan (1982:36) view the Northern Archaic as the later *phase* of the Northwest Microblade Tradition.

In other words, it can be argued that the changes in material culture in the archaeological record do not imply a physical replacement of the people in a region. Consider our own material culture changes from the introduction of new technology - the archaeological remains of my family or any of my neighbours 35 years ago would not have included a personal computer, diskettes, cd-roms, or videotapes. Today they do. To suggest, based on material remains alone, that the differences between the material remains of then and today reflects the replacement of one resident population with another is clearly wrong in this instance. It could be wrong in prehistory as well, and increasing numbers of archaeologists are considering this fact.
The notion of a Northern Cordilleran Tradition was first proposed by Clark (1983) in order to account for the presence of non-microblade archaeological components underlying microblade-bearing deposits throughout the Yukon. The application of this tradition is now generally accepted to account for early Holocene sites characterized by large straight and round-based lanceolate point forms, large blades and flakes, and transverse notched burins, but which lack microblades. However, even this tradition is increasingly regarded as having direct continuity with the subsequent Northwest Microblade Tradition (Wright 1995; Clark et al. 1999).

The Archaeological Sequence of Eastern Beringia (Central Alaska and Northwest Yukon)

For some years the archaeological sequence of F. H. West and his collaborators (West 1996c) dominated the prehistory of Alaska; this generally agreed with the Yukon sequence of technology but favors earlier dates, based on sites within unglaciated eastern Beringia, and a slightly different terminology. The principal exception to this generalization is that the earliest components are variously classified as belonging to the Chindadn / Nenana Complex, the Denali Complex, or the Eastern Beringian Tradition. More recently Holmes (2008) and Hoeffecker (2008) have proposed new complexes or phases for the late Pleistocene technologies of interior Alaska.

Figure 16. Chindadn (“Ancestor”) points from Healy Lake.

(from West 1996c)
Chindadn Complex / Nenana Complex and Swan Point Dyuktaï

The relationship between the Chindadn and Nenana complexes is currently under debate. Many of the sites in this period share similar sedimentary contexts. Located on buried paleosols below wind-blown glacial silts (loess sediments), some of these sites have exceptional organic preservation of bone, antler, and mammoth ivory, the latter presumably scavenged from earlier Pleistocene deposits exposed along river banks, which has revealed in some detail the diet of these culture carriers (Dilley 1998). Besides the expected remains of larger game – bison, elk, and sheep - their diet clearly included significant proportions of small mammals, migratory waterfowl and their eggs, and fish (Yesner et al. 1992, Yesner 1996, Yesner et al. 2011).

![Figure 17. Dry Creek, Component I, Nenana Complex](from West 1996c)

The Dry Creek, Walker Road, and Moose Creek sites in the Nenana valley provided the basis for the construction of the Nenana complex (Powers and Hoffecker 1989; Hoeffecker, et al.
1993). Dated to between 13 and 13.6 thousand years ago in the Nenana valley, it is characterized by an emphasis on bifacial technology on blades and flakes, triangular and tear-dropped shaped (Chindadn) projectile points and / or knives (Cook 1969, 1996; Holmes 2001), straight and concave-based lanceolate projectile points, perforators (including bone needles), endscrapers and sidescrapers, but is lacking microblades.

The Nenana complex appellation was subsequently extended to include a series of site components along the Tanana River proper, including Healy Lake, Broken Mammoth, and Swan Point (Goebel and Slobodin 1999; Hamilton and Goebel 1999). In earlier reports on Little John, I and my collaborators have also designated the Western lobe loess stratum component at the Little John site, which includes Chindadn bifaces, straight-based lanceolate projectile points or knives, large bifaces, bifacial blade and flake technology, endscrapers, and burins, but lacking microblade technology, as a Nenana assemblage (Easton 2007c; Easton and MacKay 2008).

Based on geographical, temporal, and technological differences, Holmes (2001) has for some time argued that we should recognize these late Pleistocene Nenana valley and Tanana valley components as separate complexes – the Nenana complex for the former and Chindadn complex for the latter. Geographically their separation is of enough distance to warrant this. Temporally the dated Chindadn complex components in the Tanana valley are all younger than those in the Nenana valley: Cultural Zone 3 at Broken Mammoth is dated to between 12.6 and 12 thousand calendar years ago (Yesner et al. 1992; Yesner 1996), Cultural Zone 3 at Swan Point is dated to between 12.5 and 11.5 thousand calendar years ago (Holmes et al. 1996; Holmes 2008), and the basal levels of Healy Lake are dated to between 9.1 and 13.3 thousand calendar years ago, with an average of c. 11 thousand calendar years ago (Cook 1969, 1996).

Technologically, all three assemblages of these Chindadn complex components at all three sites contain Chindadn bifaces along with some evidence of microblade technology:

microblades are found in small numbers at Swan Point CZ3 (34) and 44 are reported for Broken Mammoth (Krasinski 2005:46); however no microblade cores have been recovered from CZ 3 at either site. The presence of microblades negates inclusion of the Broken Mammoth and Swan Point CZ 3 assemblages in the Nenana complex.

Assignment of CZ 3 to the Chindadn complex is a better fit and has precedence over the Nenana complex, especially in the Tanana Valley. I place this group of components

6 Dry Creek, Component I is dated at 11,120 +/- 85 radiocarbon years – 13,025 +/- calibrated calendar years (Hoffecker et al. 1996). The Nenana component at Walker Road has several dates averaging 11,208 +/- 92 radiocarbon years – 13,100 calibrated calendar years (Goebel et al. 1996; Goebel 2008). The Nenana component at Moose Creek is dated between 11,730 +/- 250 radiocarbon years – 13,681 +/- 316 calibrated calendar years (Hoffecker 1996) - and 11,190 +/- 60 – 13,091 +/- 117 calibrated calendar years (Pearson 1999).
(Healy Lake Chindadn, Broken Mammoth CZ 3, and Swan Point CZ 3) in the EBT [East Beringian tradition] Phase II, and it may be possible to include the Nenana complex as well (Holmes 2008:6).

Holmes’ identification of a Phase II, which includes both Chindadn and Nenana complexes, within an “East Beringian tradition” is made in order to account for the earlier, distinct occupation at Swan Point at c. 14,000 calendar years ago, that is characterized by what he calls the Dyuktai microblade production technique, which “is based on preparing a biface (or less common, a blade or flake) preform, producing a platform by removing spalls from the lateral edge, and then detaching microblades” (Holmes 2008:5). He sees this form of microblade
production as directly derivative from the Dyuktai and Yubetsu traditions of eastern Siberia, northern China, northern Korea, and Northern Japan and distinctively different from the “Campus” or “Denali” microblade production technique.

The best way to distinguish between the two techniques is to compare the core platforms. Dyuktai core platforms were created and maintained by spall removal along the entire core length. Campus core platforms were created by extensive retouch followed by core tablet removal, and maintained by subsequent platform retouching necessary to detach another core tablet. The core tablets often hinged out so that some of the platform preparation trimming scars were retained. I see this as a significant difference between Beringian microblade technology, based on the Dyuktai technique, and the later Alaskan technologies of the American Paleoarctic tradition and Denali Complex, which may have been influenced by Dyuktai culture, but became an Alaskan prodigy (Holmes 2008:5).

In addition to the practice of Dyuktai microblade core preparation technique, Holmes’ notes that the 14 thousand year old Swan Point Cultural Zone 4 includes transverse and dihedral burins, hammer stones, possible anvil stones, utilized flakes, and, “as minor elements”, blades and blade-like flakes. No complete formed bifaces, other than those prepared for microblade production, have yet been recovered from Swan Point CZ 4, though several biface fragments and thinning flakes indicate “thin biface production . . . but the finished form of these . . . is unknown” (Holmes 2008:6). A summary of Holmes’ schema is presented in the figure below (see also Holmes 2011).

Based on these arguments and the evidence from Swan Point I am now inclined to agree with Holmes that the Tanana valley components should be separated from the Nenana complex and designated as belonging to the separate Chindadn complex, which would include its expression at Little John as well. Some implications of this shift in terminology is explored further in Easton et al. (2011).
Denali Complex (American Paleo-Arctic Tradition / Beringian Tradition)

This archaeological culture is found from about 11,000 years ago to about 9,500 years ago and is characterized by the presence of microblades, wedge-shaped microblade cores, and burins. The American Paleoarctic Tradition was originally defined by Anderson (1970a, 1970b) on the basis of excavations at the Akmak and Onion Portage sites near the Brooks Range. It has subsequently been applied to a great number of assemblages within a wide variety of environmental contexts (maritime, transitional, interior, montane, northern, central, and coastal Alaska and Yukon). West (1981, 1996) subsumes these assemblages into an even wider Beringian Tradition that extends geographically into eastern Siberia / western Beringia, and would include the Nenana complex assemblages as well, on the basis that the lack of microblades is explained by site function – they are not found where they are not used.
The presence of wedge-shaped microblade cores (one of a number of alternative core forms from which microblades can be struck) is the common element, which unifies the designation. Some archaeologists (e.g. Dixon 1999, and myself), find the inclusion of such a variety of assemblages to reduce the utility of both constructs to little more than some indication of relationship between them; a more useful construct for the Tanana River valley is West’s earlier defined Denali complex.

Figure 21. Microblade Technology from Component II (Denali Complex), Dry Creek Site. (from West 1996c)
Northern Archaic Tradition
I have described this archaeological culture earlier. It is found from about 6,000 years ago to about 1,500 years ago in Alaska and is characterized by the appearance of small, side-notched projectile points, as well as high numbers of end-scrapers, and the presence of notched pebbles, presumably used for net weights.

Late Denali Complex
The presence of wedge-shaped “Denali” microblade cores at the Campus site, as well as other undated sites in the Tanana valley (Nelson 1935, 1937; West 1975), which have been subsequently radiocarbon dated to the late Holocene, led to the notion of a “Late Denali complex,” circa 3,500 to 1,500 years ago (West 1967, 1975; Moberly 1991). It is
characterized by the presence (reappearance?) of microblades and burins, in components which otherwise are similar to the Northern Archaic (i.e., containing side-notched points, etc.).

The Campus site has been excavated on eight occasions between 1933 and 1995 (University of Alaska 1934, Rainey 1939, Moberly 1991, Pearson and Powers 2001). The initial recovery of wedge-shaped microblade cores at this site led Nels C. Nelson of the American Museum of Natural History, who examined the collection in 1935, to note: "the cores and the small endscrapers . . . are identical in several respects with . . . specimens found in the Gobi desert [and] furnish the first clear evidence we have of early migration to the American continent. . . possibly 7,000 to 10,000 years ago" (Nelson 1935:356).

Athapaskan Tradition

This archaeological culture is found from about 1,500 years ago to about 150 years ago and is characterized by a shift to the introduction of copper technology, stemmed projectile points, and the increased use of bone and antler arrowheads (although it is likely that this is a largely a function of better preservation of more recent organic material).

Euroamerican Tradition

This archaeological culture began about 150 years ago and is characterized by the introduction of European manufactured goods and materials

Comparative Discussion of the Interior Southeastern Beringian Archaeological Sequence

As can be seen, there are several direct correspondences to be made between the Alaskan and Yukon chronologies. For all intents and purposes the Euroamerican Tradition is equivalent to the Bennett Lake Phase and the Athapaskan Tradition to the Aishihik Phase. In combination, both of these Alaskan traditions are equivalent to the Yukon’s Late Prehistoric Tradition. There is also a direct correspondence between the two regions' Northern Archaic Traditions.
The presence of a microblade bearing Late Denali Complex within the time of the Northern Archaic has correspondence as well. Recent analyses of the temporal range of microblade technology in the Yukon have suggested that in many local areas this method has persisted up until quite recent times (Hare and Hammer 1997; Clark et al. 1999). Grouping together both microblade and non-microblade sites with the more embracing Middle Prehistoric Period, or altering our definition of the Northern Archaic to include the presence of microblades, may be called for.

The distinguishing feature between the Denali Complex (c. 11,000 to 9,500 years ago) and the Northwest Microblade Tradition (c. 7-8,000 to 4,500-5,000 years ago) is time. Yet most researchers agree that the latter represents the migration of this technology eastward over space through this time.

Finally, there does seem to be some correspondence between the Nenana Complex and Clark's Northern Cordilleran Tradition with their emphasis on bifacially worked tools, the presence of blades, and the lack of microblades. However, we can also see distinctive differences including the presence of Chindaan type and basally thinned points in the Nenana Complex and their absence in the Northern Cordilleran Tradition.

Recent comparisons of the components associated with the Nenana and Denali Complexes has led some to suggest that these may all belong to a single over-arching tradition, which West has named the (Eastern) Beringian Tradition. West has put the case most strongly:

There is no unique Nenana artifact. Every Nenana artifact form can be duplicated in Denali. The absence of microblades surely has simpler explanations than . . . calling upon another culture - and one without antecedents at that. This certainly suggests that Nenana is, at best, a Denali variant (West 2000:4, quoted in Heffner 2002:26).

Resolution of this question may well hinge on archaeological evidence within the Borderlands region. Heffner's (2002) excavation and analysis of the KaVn-2 site, not far south of Beaver Creek, brought to light an early component dated between 10,670 and 10,130 radiocarbon years before present, which was occupied within a few hundred years of deglaciation in the area. Heffner argues that the, "assemblage can be seen as intermediary between the Nenana Complex or Northern Cordilleran Tradition and the
Denali Complex or American Paleo-Arctic Tradition" (Heffner 2002:119). He goes on to argue that this fact lends support to the Eastern Beringian Tradition as the most appropriate cultural historical classification for early sites in interior northwestern North America. As noted earlier, the Eastern Beringian Tradition posits that the Nenana and Denali Complexes of Central Alaska, and by extension the Northern Cordilleran Tradition and American Paleo-Arctic Traditions as well, are technologically related and that assemblage differences in early archaeological sites can be better explained by site location, site function, and site seasonality (Heffner 2002:120).

At this point, based on the emergent evidence from the Little John and Swan Point sites, we take an alternative view which maintains the separation of the Denali and Nenana / Chindadn complexes along the lines proposed by Holmes (2008, 2011). Indeed, we have most recently proposed the separation of the Nenana and Chindadn complexes based on geographical and chronological distance, suggesting that the former be restricted to sites within the Nenana valley while the latter be applied to the late Pleistocene, non-microblade assemblages of the Tanana valley proper (Easton et al. 2011).

Archaeological Sites within the Borderlands Region

Prior to the initiation of the Scottie Creek Culture History Project by Easton in the mid-1990s, the Borderlands area had received limited archaeological attention.

Johnson first conducted survey efforts in the area in 1944 and 1948, after the construction of the Alaska Highway, but he did not record any archaeological sites in our area of interest (Johnson 1946, Johnson and Raup 1964). A number of archaeological survey efforts passed through the area during environmental impact assessments for the Foothills natural gas pipeline project in the late 1970s and early 1980s and they are summarized in Damp and Van Dyke (1982). Only one site was recorded within our area of concern. Tests at KaVn-1 recovered a small collection of debitage flakes. Walde (1991) conducted survey along the Alaska Highway right-of-way in 1991 from the border to the White River, returning to undertake mitigation excavation at Borden sites KaVn-2, KbVo-1, KbVo-2, and KdVo-3 (Walde 1994). Easton conducted some survey in the area
of Beaver Creek in 1994 (Easton 2002a). In 1999, Ty Heffner revisited KaVn-2 to complete the excavation and analysis of this site, as well as survey a number of localities around Tchawsahmon Lake (Heffner 2000, 2002). Easton has conducted additional surveys of the middle reach of Scottie Creek in 2001 and 2002 (Easton 2002), and the northern Mirror Creek drainage in 2003, 2004, 2006, and 2007 (Easton 2007c, Easton, this report). Just across the border in Alaska, a series of site surveys of historic native settlements and graveyards has been undertaken by the Bureau of Indian Affairs (BIA) on the upper Chisana and Nabesna Rivers. While several of these sites are presumed to hold additional evidence of prehistoric occupation, limited subsurface excavation undertaken in the course of the surveys did not uncover any artifacts and so do not bear directly on this current discussion (BIA 1993a, 1993b, 1995a, 1995b, 1996a, 1996b).

William Sheppard undertook archaeological survey work at several localities in Alaska recovering middle and late Holocene components along lower Scottie Creek, Deadman Lake, and in the Tok Junction area (Sheppard 1999 and 2001, Sheppard et al. 1991). Bob Satler and Tom Gillespie of the Tanana Chiefs Conference, and Easton conducted limited archaeological survey of several sites in the area about Northway and Tok, Alaska in 2006; two sites were discovered near the border, one of which, at the mouth of Mirror Creek where it meets the Chisana River, bears a similar stratigraphic profile to that found at the Little John site and consequently may be related, although no artifacts were recovered in the single test pit excavated there (Gillespie 2006). In collaboration with Tanana Chiefs Conference and Northway Village Inc. and Northway Village Council, Easton undertook testing at a number of sites in the Northway region in 2009, identifying occupations along the shores of Deadman and Hidden Lakes (Easton 2009).

Table 2, below, presents summary information on most of the archaeological sites recorded to date on the Canadian side of the border eastward to about the White River. These sites reveal a culture history pattern similar to that of the regional archaeological sequences to the west and east of the study area.

In addition to archaeological remains related to the prehistoric occupation of humans, the Mirror Creek, Little Scottie Creek, and Big Scottie Creek basins have been

7 Bill Sheppard passed on in 2006; I am currently working on analyzing the last of his collections held at Northern Land Use Planning, Fairbanks at the request of Ken Pratt.
the location of the recovery of Pleistocene-age paleontological remains, including mammoth, bison, caribou, horse, saiga, and unidentified feline spp. Several associated fragments of Equus lambei recovered during highway reconstruction in 1996 have been dated to 20,660 +/- 100 BP. Three juvenile mammoth tusks were found close to each other in the middle Little Scottie Creek basin (MacIntosh 1997, Easton n.d.). Both the horse and juvenile mammoth tusks were recovered less than two km from the Little John site.

<table>
<thead>
<tr>
<th>Table 4. Canadian Archaeological Sites of the Yukon - Alaska Borderlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KaVn-1</td>
</tr>
<tr>
<td>KaVn-2</td>
</tr>
<tr>
<td>KbVo-1</td>
</tr>
<tr>
<td>KbVo-2</td>
</tr>
<tr>
<td>KbVo-3</td>
</tr>
<tr>
<td>KcVo-1</td>
</tr>
<tr>
<td>KcVo-2</td>
</tr>
<tr>
<td>KcVo-3</td>
</tr>
<tr>
<td>KdVo-1</td>
</tr>
<tr>
<td>KdVo-2</td>
</tr>
<tr>
<td>KdVo-3</td>
</tr>
<tr>
<td>KdVo-5</td>
</tr>
</tbody>
</table>
Having set the larger archaeological context of the region, we now turn to a detailed discussion of our work at the Little John site in 2010.
LOCATION OF THE LITTLE JOHN SITE

The Little John site is located just off the Alaska Highway, twelve kilometers north of the village of Beaver Creek, Yukon, about two kilometers due East from the international border with Alaska. It occupies most of the higher surface of a knoll overlooking the upper reach of Mirror Creek, known as Cheejil Niik / Grayling Creek / in the local Upper Tanana Athapaskan language. It overlooks the basin of the creek below from the north and lies within the most western extension of the Tanana River drainage; Snag Creek crosses the valley about seven kilometers east of the site, marking the watershed division between the Tanana and Yukon River drainage basins.
Figure 24. Aerial view of the Little John Site from the South. KdVo-6 on left, KdVo-7 on right. Mirror Creek can be seen in the foreground, the Alaska Highway running across the centre, and Little Scottie Creek valley behind.

Figure 25. Aerial view of the Little John site from the West.
HISTORY AND METHODS OF INVESTIGATIONS AT THE LITTLE JOHN SITE

Although the Little John site lies within the Alaska Highway corridor its archaeological deposits were not discovered until 2002, during regional survey efforts associated with Easton's long term Scottie Creek Culture History Project. In that year, plans to work further up the Scottie Creek valley were delayed and several test pits were dug at the location on the recommendation of Upper Tanana Elder Joseph Tommy Johnny. The results of these tests indicated mid-Holocene (Northern Archaic) to historic occupation of the site. In 2003, an additional 61 test pits were dug across the hillside and 22 m² of the site were excavated by natural levels by the Yukon College Field School in Subarctic Archaeology and Ethnography. Thirteen of these units were in the West lobe, four in the Rock fall lobe, one in the East lobe, and the remainder scattered along the periphery of the site. These efforts recovered Nenana complex artifacts from the West lobe,

8 Directed by Easton, crew members consisted of Glen MacKay, Ken Hermanson, Duncan Armitage, and Joseph Tommy Johnny.
9 Directed by Easton, crew members consisted of Glen MacKay, Ken Hermanson, Christopher Baker, Jolene Johnny, Terrance Sam, Peter Schnurr, Nicole Schiffart, Michael Nieman, Mellissa Winters, Eldred Johnny, and Vance Hutchinson.
underlying a microblade bearing horizon, identified the presence of a paleosol containing fauna and artifacts in the East lobe, expanded the assemblage related to the mid-holocene Northern Archaic, and identified a military presence on the site, likely during the building of the Alaska highway.

The Figure above shows the location of excavation units on the site through 2010. Easton (2007a:14-18) provides details on test and excavation units prior to 2007. In 2004, nine m² were excavated contiguous to the first unit in the East lobe, while an additional six m² were excavated in the West lobe; a five meter trench was also begun in the
Permafrost lobe of the site.10 In 2006, with support of the White River First Nation and the Tanana Chief’s Conference, 14 m2 were excavated in the East lobe.11 In 2007 forty-nine m2 units were exposed;12 twenty-two of these remained to be fully excavated.

In 2008 nine of these units were completed to basal regolith and all were profiled and twenty-seven new units were excavated, including eight new 1 m units completed in the SW site quadrant, fourteen new 1 m units excavated to the Loess below Paleosol stratum in the NW site quadrant, and five new 1 m units completed in the NE and SE site quadrants. Due to the age and nature of the Loess below Paleosol stratum it was decided to stop excavation of the majority of units at this level in order to undertake wide area excavation in 2009. Finally, in 2008 an eight-meter trench was mechanically exposed in the Swale lobe in the far NW of the site that exposed a buried Paleosol dating to the Wisconsin Interstadial, c. 44,000 years old (Easton et al. 2009). The exposed strata were profiled and column sampled for further detailed analysis (sediment, pollen, etc.) at a later date when resources permit.

In 2009 sixteen units were excavated. Seven of these were in the West Lobe, two at the apex of the hill near the cabin, and seven in the East Lobe (Easton 2010).13

In 2010 thirty-two units were either fully or partially excavated. Fifteen of these were in the West Lobe, eight at the apex of the hill near the cabin, and nine in the East Lobe. Most of the East Lobe units were excavated to the loess deposits just below the

10 Directed by Easton, crew members consisted of Glen MacKay, Arthur McMaster, Paul Nadasdy, Eldred Johnny, and Joseph Graham.

11 Directed by Easton, crew members consisted of Patricia Young, Camille Sanford, Glen MacKay, Eldred Johnny, Derrick Peters, David Johnny jr., Nicolas Sam, Peter Schnurr, Kathy Lowe, and Patrick Johnny.

12 Directed by Easton and David Yesner, participants included Patricia Young and Camille Sanford of Tetlin Village, Nicolas Sam of Northway, Jordan Vandermeer, Eldred Johnny, and Derrick Peters of White River First Nation, Arthur McMaster of Yukon College, Joseph Easton, and members of the University of Alaska Anchorage - Yukon College Field School in Archaeology: Dan Stone, Lorraine Alfen, Kris Crossen, Kay Toye, Katie Herrera, Jessica Jayne, Susan Savage, Kenzie Olman, Douglas Blevins, Jessie Petersen, Nicki Dwyer, Adriana Campany, Dio Glentis, Merideth Wismer, Adam Bathe, Sam Hutchinson, and Rita Eagle.

13 Directed by Easton, crew members consisted of Camille Sanford (Tetlin Village and University of Alaska Anchorage), Katie Hannigan Toye (Arizona), Emily Youatt (Reed College), Jessica Pepe (Tulane University), Ian MacDonald (Yukon College and Champagne Aishihik First Nation), Phillip Sabelli (Boston), Annalisa Heppner (U of Tennessee), Karen and Bob Rogers (Washington State), Joseph Easton (Burnaby, B.C.), Keith Jacob (Australia), Chelsea Johnny, Eddie Johnny, and Trudy Brown (Beaver Creek, Yukon), Margo MacKay, Kat Cronk, and Kate Menzel (Anchorage), Jim Guy (Victoria), Kate Crosmer (Lycoming College), and Dr. David Yesner and Danny Yesner.
main paleosol complex with a view towards undertaking an area excavation of these loess sediments in 2011.14

All excavation units were excavated by trowel within unit quadrants by the natural layers identified in the site stratigraphy. Completed excavation units had at least one side profiled; many excavation units had two or more profiled. Recovered artifacts and fauna were recorded by three-dimensional provenience to the surface of the unit, unless they were recovered in the excavation screen, in which case their provenience was recorded by natural level and unit quadrant. The Electronic Appendices provide catalogues of recovered artifacts and inventoried recovered fauna. Photographs of representative strata, features, and artifacts \textit{in situ} were regularly taken. A representative selection of these photographs is presented in this report and digital copies of additional photos are provided in the Electronic Appendix. Finally, representative sediment samples and potential radiocarbon samples were collected and archived for future analysis when resources permit.

Subsequent to field recovery, artifacts and faunal remains have been curated at the Faculty of Liberal Arts at Yukon College and catalogued by unique site numbers, along with recovery provenience and additional descriptive characteristics. Formed artifacts and modified flakes have received metric and character (form, raw material, flake or modification location, among others) descriptions, using the categories established by the Yukon Heritage Branch artifact database forms which use the FileMaker computer program. Major formed artifacts have been photographed and/or drawn. Unmodified flakes and manuports have also been described more basically; smaller, unmodified flakes are often described by lot, for example. The Electronic Appendices provide a full listing of these derived data.

In addition to basic cataloguing, faunal material has been identified to genus and species to the extent possible through comparison with known skeletal remains held by a variety of sources, including Dr. David Yesner of the Department of Anthropology, University of Alaska - Anchorage, the Yukon Heritage Branch, standard published

14 Directed by Easton, crew members are listed in the acknowledgements of this report, above.
skeletal guides, and consultations with colleagues. Vance Hutchinson, a biological anthropologist in Whitehorse, has also undertaken microscopic examination of the faunal material with a view identifying cutmarks or other signs of cultural modification. An Electronic Appendix provides a photographic catalogue of collected fauna and work is underway on a publication summarizing the cumulative results of our joint analyses.

Detailed distributional analysis of several representative units has been undertaken, while more limited distributional analysis of recovered artifacts has been undertaken across the site, based on recovered level, raw material, and artifact type. A first draft of an ARCVIEW GIS representation of the Little John site has begun to incorporate artifact and faunal distribution data into this model. We intend to continue this work through the fall and hope to report further on our findings next spring. A detailed analysis of Obsidian Sources in the Little John collection through 2006 was undertaken by Natalia Slobodin and Jeff Speakman and presented in our 2007 report (Easton 2007a); additional analysis of subsequently collected obsidian has been undertaken by Jeff Raisic and will be summarized in an upcoming publication. The general trends identified in our 2007 report are sustained.

15 These colleagues have included Vance Hutchinson, David Yesner, Scott Gilbert, David Mossop, Greg Hare, Susan Crockford, Paul Mateus, and Grant Zazula.
(Easton and MacKay 2008), and a new volume on lithic industries of Beringia forthcoming from Texas A&M University Press (Easton, et al. 2011, Yesner et al. 2011). Ethnographic publications arising from research on the borderland include an ethnohistorical account of the government survey of the Yukon - Alaska border (Easton 2007b), an essay documenting contemporary hunter-gatherer values embedded in the Dineh Way (Easton 2007c), a multi-disciplinary study of the contemporary subsistence fishery in the Upper Tanana River Watershed (Friend, et al. 2007; Friend, Holton, and Easton 2007), and an examination of contemporary conflicts between Dineh and Game Management views of animals (Easton 2008). Based on her fieldwork participation in 2009 and subsequent field interviews in January 2010, Emily Youatt and Easton presented a paper on contemporary Borderland Dineh Identity at the 2010 meetings of the Alaska Anthropology Association. Ms. Youatt also completed and successfully defended her honours thesis on the topic at Reed College, Oregon in May of this year. A short public interpretation poster was prepared by Easton for the White River First Nation for distribution in 2008.

As a result of this exposure, the significance of the Little John site is being recognized within the discipline. A description of results through 2005 is included in the most recent summary of early western subarctic prehistory (Hoeffecker and Elias 2007). Collaborative field schools were held with the University of Alaska Anchorage and Yukon College in 2007 and 2008, and Dr. David Yesner once again joined our fieldwork in 2009 and 2010.

Financial and In-Kind support of continued fieldwork and analysis on the Yukon Alaska borderlands in 2010 was been received from the White River First Nation and the School of Liberal Arts, Yukon College.

Research plans for 2011 include continued excavations at the Little John site, additional archaeological survey in the region, including several sites on Northway Native Incorporated and Tetlin Village lands in Alaska in the context of community archaeology and ethnography camps, further ethnobotanical documentation, and additional ethnographic documentation as opportunities arise.
GENERAL STRATIGRAPHY AT THE LITTLE JOHN SITE

In general terms the geological stratigraphy of the site consists of a basal regolith comprised of a volcanic dyke (Reger, pers. com. 2009), overlaid with sparse glacial till representing a glacial maximum known locally as the Mirror Creek glacial advance, variously dated to the Late Illinoian – MIS 6, c. 140000 BP (Bostock, 1965; Krinsley, 1965) or the Early Wisconsin – MIS 4, c. 70000 BP (Denton 1974; Hughes et al., 1989). Above this are found loess sediments laid down during the Younger Dryas Climatic Event (Reger pers. com. 2009) varying in thickness from a few to over sixty centimeters, and then ten to twenty centimeters of Brunisols typical of the boreal forest in the region. In most areas this B horizon is intersected by a volcanic ash layer of up to several centimeters which radiocarbon dates suggest is a tephra deposit of the second White River volcanic eruption, c. 1200 BP (West and Donaldson 2002; Lerbekmo and Westgate, 1975). A thin (1 – 2 cm) A/O horizon caps the sequence.
Figure 29. Representative Stratigraphic Profile, East Lobe.

The discontinuous depth of these strata is accounted for by the undulating topography of the site, which ranges from over meter deep basins to eroding hillsides. The stratigraphy is also complicated by the action of both ancient and contemporary permafrost, solifluction, and what seems to be a mass wasting event (probably a series of colluvial deposits originating from the higher ground to the North) over a portion of the site (Reger pers. com. 2009). Because of this differentiation in depth and nature of strata we have divided the site into five zones or lobes (see Fig. 30, below).

The West Lobe, where the strata are most shallow, occupies the southwestern hillside on which deposits range from five to thirty centimeters. The Permafrost Lobe, where frozen ground is encountered mere centimeters from the surface, occupies the north-facing slope of the knoll. The Rockfall lobe, where large boulders lie through the brunisol and loess deposits, runs roughly through the centre of the site on a north – south axis. The East Lobe, a large basin that troughs east from the site, and which contains the deep sedimentary deposits of one hundred centimeters and more and series of paleosol strata near the bottom of the sequence. Capped by forty to sixty centimeters of loess
below the B horizon, this paleosol complex contains a well preserved, culturally deposited faunal assemblage, in direct association with lithic artifacts. Test excavations in 2007 revealed that the basal bedrock dips sharply North of the East lobe into what I now designate as the Swale lobe; Unit N31W11 was excavated to a depth of nearly 5 meters through loess before it was abandoned due to safety concerns.

In 2008 a mechanical excavator run by Walter Dyke of Beaver Creek exposed a trench through this area, revealing massive loess deposition above organic paleosols subsequently dated to between 42,000 and greater than 46,000 years old, representing a depositional episode during the last Wisconsin Interstadial or perhaps earlier (Easton et al. 2008).
Excavations in 2009 in the East Lobe revealed an apparent trend for greater separation of the paleosol complex into increasingly distinct strata as we exposed Units to the North and West of our previous excavations, trend continued in our excavations in 2010. This is well illustrated in the exposure of the West Wall of Unit N17W11, shown below. A lack of financial resources to date these strata separately prevents us from refining our chronology of these deposits beyond the 10 – 12 thousand calendar years.
established by previous AMS dates on bones within these strata, but the possibility to do so is emerging as we explore these deposits further.

Figure 33. Unit N17W11 SW showing separation of Paleosol Complex strata.

Similar to our work in 2008 and 2009, as we moved further North in our East Lobe area excavation in 2010 we encountered increasing macro-organic detritus in the lower Paleosol complex, characterized by wood flakes, fleks, and slivers and chunks of carbonized wood. An example of this is seen in Unit N18W11, illustrated below. We suspect, although cannot demonstrate, this higher macro organic content is a function of the level’s proximity to the permafrost. In any event, samples of materials encountered were taken as potential AMS dating and identification of wood species when resources allow.
Figure 34. Wood Fragments in N18 W11. L: SW Corner of Unit. R: Detail of Wood Fragments.

Little John Radiocarbon Dates
Sequence From East Lobe Strata

CALIBRATED DATES

Upper B2
- c. Historic, 90, 150, 220, 1200 (White River Ash), 1620, 1950

Paleosol Complex
- c. 9,800 – 11,700 years ago

Loess below Paleosols
- c. 12,900
- c. 14,000 years ago

West Lobe Loess Stratum
Remains Undated

Figure 35. Selected Radiocarbon Dates at KdVo-6.
RADIOCARBON DATES AT KdVo-6

At present there are 15 AMS radiocarbon dates that relate to the Little John site that have been returned on 16 samples submitted to the Beta-Analytic laboratory in Florida; one bone sample had insufficient collagen to allow dating. The Figure above shows the accumulated dates from the East Lobe, while the Table below summarizes these AMS dates that range from the most recent past through the Holocene to the terminal Pleistocene, and further to what seems to be a Wisconsin Glacial Period Interstadial.

![Figure 36. Culturally modified Bison spp. vertebrae remains in situ, loess below paleosol stratum, dated to 12020 radiocarbon years or c. 14,000 calendar years before present.](image)

Most significantly a radio carbon sample on a vertebra from *Bison spp.* recovered from the loess below the paleosol horizons in the East lobe has returned a date of 12020 +/- 70 radio carbon years, which calibrates to a calendrical date of between 14050 - 13720 years ago. Another sample from a *Cervus spp.* proximal innominate fragment from this same level was dated in 2010 and returned a date of 10960 +/- 30 radiocarbon years, which calibrates to a calendrical date of 12, 885 +/- 91. Thus, the East lobe of the Little John site may contain one of the oldest human occupations known in Eastern Beringia (the lowest level at the Swan Point site has been dated by multiple radio
carbon dates to circa 14,100) and certainly one of the oldest prehistoric sites in contemporary Canadian geography.

Figure 37. Proximal Innominate (illium) of Wapiti dated to 10960 +/- 30 RCYBP - 12885 +/- 91 Cal YBP from Loess below Paleosol, N13W02 – Fa 2006-41 (n.b. number in photo is field number).

Finally, we have also analyzed a fragment of ivory from a scatter of this material found eroding from the hillside across the highway from the Little John site, which produced a date of 38160 +/- 310 RCYBP (Beta 231794); we presume it is from *Mammuthus*. Combined with the recovery of additional Pleistocene fauna in the area representing specimens of *Bison, Equus, Mammuthus, Rangifer*, and possibly *Saiga*, including an *Equus lambei* specimen, recovered about two km from the site, which has been radiocarbon dated to 20660 +/- 100 RCYBP (Beta 70102; MacIntosh 1997:84), these fauna confirm that the area about the Little John site was capable of supporting a range of mega-fauna during the mid to late Wisconsin glacial period from at least 38,000 years ago. Subsequently, it is clear that this region holds considerable potential for the recovery of additional paleontological remains related to the Beringian prehistory of the Yukon.
Table 5. Radio Carbon Dates from the Little John Site

<table>
<thead>
<tr>
<th>Lab #</th>
<th>14 C age</th>
<th>Calibrated 2 δ</th>
<th>Level</th>
<th>Unit</th>
<th>DBS cm</th>
<th>Material</th>
<th>13C/12C</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta 181485</td>
<td>130.44</td>
<td>-/-.86 pMC</td>
<td>N/A</td>
<td>B2-L</td>
<td>15-20</td>
<td>Wood</td>
<td>-19.7</td>
<td>AMS 9/26/03</td>
</tr>
<tr>
<td>Beta 182798</td>
<td>10190 – 9865 and 9855 – 9780</td>
<td>67</td>
<td>Paleosol</td>
<td>U20SE</td>
<td>Bone collagen, rangifer?</td>
<td>-19.7</td>
<td>AMS - below ash date 2nd (c. 1200 BP) WR tephra on site</td>
<td></td>
</tr>
<tr>
<td>Beta 182799</td>
<td>1725 – 1545</td>
<td>11.5</td>
<td>B2</td>
<td>U5NE</td>
<td>Charred material</td>
<td>-25.6</td>
<td>AMS 6/30/06</td>
<td></td>
</tr>
<tr>
<td>Beta 217279</td>
<td>11090 – 10930 and 10880 – 10690</td>
<td>70</td>
<td>Paleosol</td>
<td>U32</td>
<td>Bone collagen, rangifer</td>
<td>-19.1</td>
<td>AMS 8/03/06</td>
<td></td>
</tr>
<tr>
<td>Beta 218235</td>
<td>11120 – 10690</td>
<td>54.5</td>
<td>Paleosol</td>
<td>31</td>
<td>Bone collagen, Swan femur</td>
<td>-21.2</td>
<td>fragment from hillside across road from KdVo6</td>
<td></td>
</tr>
<tr>
<td>Beta 231794</td>
<td>11770 - 10700</td>
<td>98</td>
<td>Paleosol</td>
<td>N16W8</td>
<td>Bone collagen, bison radius</td>
<td>-20.3</td>
<td>AMS</td>
<td></td>
</tr>
<tr>
<td>Beta 241523</td>
<td>14050 - 13720</td>
<td>85</td>
<td>Loess below Paleosol</td>
<td>N17W4</td>
<td>Bone collagen, bison vertebra</td>
<td>-19.1</td>
<td>AMS date similar to Component 1, Swan Point</td>
<td></td>
</tr>
<tr>
<td>Beta 241525</td>
<td>11760 - 11250</td>
<td>84</td>
<td>Paleosol</td>
<td>N17W7</td>
<td>Bone collagen, wapiti phalanx</td>
<td>-20.4</td>
<td>AMS</td>
<td></td>
</tr>
<tr>
<td>Beta 2415515</td>
<td>2340 – 2120</td>
<td>B2</td>
<td>S19W9</td>
<td>Charred material</td>
<td>-23.0</td>
<td>AMS assoc. w/ foliate and diminutive points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta 245516</td>
<td>20th Century</td>
<td>B2</td>
<td>S16W18</td>
<td>Charred material</td>
<td>-24.4</td>
<td>AMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta 245518</td>
<td>1990 – 1820</td>
<td>B2</td>
<td>N9W8</td>
<td>Charred material</td>
<td>-25.0</td>
<td>AMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta 246741</td>
<td>n/a</td>
<td>Swale Paleosol</td>
<td>Swale</td>
<td>Wood</td>
<td>-26.7</td>
<td>AMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta 246711</td>
<td>>46,000</td>
<td>n/a</td>
<td>Swale Paleosol</td>
<td>Swale</td>
<td>Wood</td>
<td>-28.0</td>
<td>AMS</td>
<td></td>
</tr>
<tr>
<td>Fa06-141</td>
<td>10960 – 12703 – 13087</td>
<td>N13W02</td>
<td>52.5</td>
<td>Bone collagen, wapiti inominate</td>
<td>-19.7</td>
<td>AMS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF RECOVERED FAUNA

One hundred and fifty faunal elements were recovered during excavations at KdVo6 in 2010. As in years past, many of these consist of fragmented lots that are unidentifiable beyond large or small mammal, however a good selection are identifiable to lower levels of genus or species. An analytical summary of recovered fauna through 2009 is presented.
in Yesner et. al 2011, included as an appendix to this report. Recovered fauna from 2010 is detailed in the attached faunal databases in both Filemaker (with photographs) and Excel formats. The following tables provide a summary of these data.

<table>
<thead>
<tr>
<th>Summary Fauna</th>
<th>Level</th>
<th>O/A</th>
<th>B1</th>
<th>Ash</th>
<th>B2</th>
<th>PSC</th>
<th>LbPSC</th>
<th>Grand Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bison</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>2</td>
<td>12</td>
<td></td>
<td>8.00%</td>
</tr>
<tr>
<td>Caribou</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
<td>2.00%</td>
</tr>
<tr>
<td>Pig</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate Mammal</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td></td>
<td>89.33%</td>
</tr>
<tr>
<td>Small Mammal</td>
<td>44</td>
<td>11</td>
<td>5</td>
<td>35</td>
<td>1</td>
<td>1</td>
<td>97</td>
<td></td>
<td>64.67%</td>
</tr>
<tr>
<td>Med Mammal</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td></td>
<td>4.67%</td>
</tr>
<tr>
<td>Large Mammal</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td>2.00%</td>
</tr>
<tr>
<td>Bird</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>13</td>
<td></td>
<td>8.67%</td>
</tr>
<tr>
<td>Med Bird</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
<td>2.67%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>47</td>
<td>12</td>
<td>5</td>
<td>35</td>
<td>38</td>
<td>13</td>
<td>150</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Table 6. Summary of Recovered Fauna by Level, KdVo6-2010

<table>
<thead>
<tr>
<th>Fauna</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bison</td>
<td>12</td>
<td>8.00%</td>
</tr>
<tr>
<td>Caribou</td>
<td>3</td>
<td>2.00%</td>
</tr>
<tr>
<td>Pig</td>
<td>1</td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate Mammal</td>
<td>134</td>
<td>89.33%</td>
</tr>
<tr>
<td>Small Mammal</td>
<td>97</td>
<td>64.67%</td>
</tr>
<tr>
<td>Med Mammal</td>
<td>7</td>
<td>4.67%</td>
</tr>
<tr>
<td>Large Mammal</td>
<td>3</td>
<td>2.00%</td>
</tr>
<tr>
<td>Bird</td>
<td>13</td>
<td>8.67%</td>
</tr>
<tr>
<td>Med Bird</td>
<td>1</td>
<td>0.67%</td>
</tr>
<tr>
<td>Indeterminate</td>
<td>4</td>
<td>2.67%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>150</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

Table 7. Count / Percentage of Recovered Fauna, All Units, KdVo6-2010

Fauna from the upper levels (O/A n= 47; B1 n=12; Ash n=5; and B2 n=35) account for 66% of fauna recovered in 2010. With the exception of an historic pork chop bone found in the A level, they are highly fragmented and calcined and difficult to identify beyond the Mammal Order, although the majority (n=98) seem to be from smaller mammals; only one specimen from the O/A level could be assigned to a medium or larger mammal.
In the Northwest Quadrant of the site (East Lobe), thirty-eight faunal specimens were collected from the Paleosol Complex (PSC) and thirteen specimens from the Loess Below Paleosol Complex (LbPSC), which includes an ill-defined and discontinuous Paleosol stringer; together these fifty-one specimens represent 34% of the total fauna recovered in 2010. Of these, twelve specimens could be definitely identified as Bison (10 from the PSC and 2 from the LbPSC) and three as Caribou (all from the PSC), while the remaining thirty-six can be identified as comprising nineteen Mammal specimens and thirteen Bird specimens, while four specimens are too fragmented to identify even to Order.

The eleven bird specimens provide further support for the exploitation of Order Aves by occupants of the lower levels at Little John, which is currently dated to between 13,000 and 14,000 years ago, and from above in the 10 – 12,000 year old Paleosol.
Complex levels (e.g. Fa10-40 through 44). For example, Fa10-12 is a medial fragment of a long bone from a medium sized unidentified bird species recovered from Unit N15W12 from a Paleosol below the Paleosol Complex level (tentatively designated P5) at 90 cm below surface.

Figure 40. KdVo6: Fa10-12, Medial Aves Long Bone Fragment, N15W12, P5

Figure 41. KdVo6: Fa10-40 - Fa10-44, Bird Bone Fragments from Unit N19W08, PC3(P4) – P5
SUMMARY OF FEATURES FROM THE LITTLE JOHN SITE, 2010

Twenty archaeological features were recorded in the course of excavations in 2010. In addition we were able to complete a detailed initial survey of the log cache / cabin first discovered in 2008. Below we provide examples of several of these features; a full log of recorded features by unit is provided in the Table below and in the print and electronic appendices.

<table>
<thead>
<tr>
<th>KdVo6 – 2010 Archaeological Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-01</td>
</tr>
<tr>
<td>2010-02</td>
</tr>
<tr>
<td>2010-03</td>
</tr>
<tr>
<td>2010-04</td>
</tr>
<tr>
<td>2010-05</td>
</tr>
<tr>
<td>2010-06</td>
</tr>
<tr>
<td>2010-07</td>
</tr>
<tr>
<td>2010-08</td>
</tr>
<tr>
<td>2010-09</td>
</tr>
<tr>
<td>2010-10</td>
</tr>
<tr>
<td>2010-11</td>
</tr>
<tr>
<td>2010-12</td>
</tr>
<tr>
<td>2010-13</td>
</tr>
<tr>
<td>2010-14</td>
</tr>
<tr>
<td>2010-15a</td>
</tr>
<tr>
<td>2010-15b</td>
</tr>
<tr>
<td>2010-16</td>
</tr>
<tr>
<td>2010-17</td>
</tr>
<tr>
<td>2010-18</td>
</tr>
<tr>
<td>2010-19</td>
</tr>
<tr>
<td>2010-20</td>
</tr>
</tbody>
</table>

16 The field note book for Unit N15W12 for 2010 was inadvertently taken by one of the student participants away with her; repeated requests for it to be returned have not been met.
Feature 2010-11 is the first detailed measured survey of the log cache / cabin feature located on the extreme eastern perimeter of the site below the historic dump zone from the first Alaska Highway roadbed.

The feature is nearly square at 8 feet 10 inches along its outside perimeter which is made up of 10 inch horizontal timber frame logs, within which are 3 inch vertical logs used as furring bars against 3 inch horizontal interior wall logs; between the interior and exterior logs is about 3 inches of insulating fill comprised of dirt, rocks, sod, and twigs. No excavation was attempted within the interior of the cabin. Who constructed this for what purpose remains unclear; local inhabitants professed no knowledge on the matter and given its provenience to the original highway path, and its strict symmetrical measurements, it may represent an artifact of the military highway construction period, c. 1942-43 documented elsewhere on the site.

Figure 42. Vertical Plan of KdVo6 - Feature 10-11, Log Cache / Cabin, NE Site Quadrant
Feature 2010-01 is in the West lobe in Unit S13W14 in the O/A stratum and is a continuation of the series of highly decayed planks that extended into Units S13W13 and
S15W16 in 2009 and Units S12W15, S12W17, S13W16, and S14W15 in 2008. The planks were milled timber, all clearly standard 2 X 4s, and painted a dark green. The planks lay roughly parallel to each other. The remains are clearly from the historic (20th century) era and analogous to historic constructions of small smokehouses or temporary shelters common in the area. Query of local inhabitants do not recall such a structure in this locality constructed by them and the remains may be related to the sites’ occupation by builders of the Alaska Highway in the early 1940s.

Feature 2010-02 is a Pebble / Cobble complex found in Unit S14W14 in the B1 stratum consisting of Hammer Stones, Anvil Stones, and Pebble artifacts that were used as smaller Hammers and Boiling Stones. Many of them are illustrated in the Lithic descriptions below, while the photo below shows them in situ. Further distributional mapping of this complex with adjacent units is required to determine wider spatial patterns in this Late Prehistoric level.

Figure 45. KdVo-6, Feature 2010-02, Pebble / Cobble Complex, S14W14, B1 Stratum

Feature 2010-19 is a hearth feature associated with bison bone in the upper Paleosol Complex (P2) in the South-East Quadrant of Unit N15W11 and shown in the photographs below.
The feature seems to be bisected by solifluction lobe of loess that may have followed a krotovina, the possible outline of which is seen as the sinuous exposure diagonally across the unit. The bison bone is seen as the white object at the western edge of the hearth outline to the southeast of the centimeter scale in the middle of the unit.
Figure 48. Detail View - Feature 2010-19, Hearth in N15W11SE, Upper Paleosol (P2), from the North

Feature 2010-20 is a cobble and pebble concentration, roughly circular in plan in the Eastern Quadrants of Unit N15W12 in horizontal association with a hearth smear of highly organic matrix, shown in the photographs below. The rocks are well below the upper loess with colluvium and are assumed to be cultural manuports.

Figure 49. KdVo6 Feature 2010-20, Cobble and Pebble Concentration, N15W12 (R unit), Middle Paleosol Complex (P3), from the North
Figure 50. KdVo6 Feature 2010-20, Oblique View, Cobble and Pebble Concentration, N15W12, Middle Paleosol Complex (P3)
SUMMARY DESCRIPTION OF SELECTED LITHIC ARTIFACTS FROM THE LITTLE JOHN SITE, 2010

This section provides summary descriptions of a selection of the major formed artifacts recovered at the Little John site in 2010; a fuller inventory is provided in the print and electronic appendices, while the tables below provide a summary of the total formed and unformed artifacts recovered at Little John in 2010.

<table>
<thead>
<tr>
<th>Summary Artifact Type</th>
<th>Level</th>
<th>O/A</th>
<th>B1</th>
<th>Ash</th>
<th>B2</th>
<th>WL Loess</th>
<th>EL Loess</th>
<th>PSC</th>
<th>PbL</th>
<th>Other</th>
<th>Grand Total</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biface</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>1.17%</td>
</tr>
<tr>
<td>Blade</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.36%</td>
</tr>
<tr>
<td>Microblade</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>16</td>
<td>1.62%</td>
</tr>
<tr>
<td>Microblade Core</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Core Tablet</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0.27%</td>
</tr>
<tr>
<td>Scraper</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0.90%</td>
</tr>
<tr>
<td>Bone Tool</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.09%</td>
</tr>
<tr>
<td>Flakes</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.72%</td>
</tr>
<tr>
<td>Hammerstone</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>33</td>
<td>2.98%</td>
</tr>
<tr>
<td>Cobble / Pebble</td>
<td>23</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>20</td>
<td>16</td>
<td>2</td>
<td>16</td>
<td>2</td>
<td>113</td>
<td>10.20%</td>
</tr>
<tr>
<td>Fire Altered</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>1.62%</td>
</tr>
<tr>
<td>Historic</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>1.28%</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0.72%</td>
</tr>
<tr>
<td>Grand Total</td>
<td>43</td>
<td>37</td>
<td>16</td>
<td>773</td>
<td>136</td>
<td>4</td>
<td>53</td>
<td>22</td>
<td>3</td>
<td>1108</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Summary of Recovered Artifacts by Type and Stratum, KdVo6-2010

Bifaces

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Biface Metrics</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Cortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>basalt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2591</td>
<td>20.1</td>
<td>12.07</td>
<td>4.65</td>
<td>0</td>
</tr>
<tr>
<td>2661</td>
<td>20.72</td>
<td>23.03</td>
<td>6.84</td>
<td>0</td>
</tr>
<tr>
<td>2709</td>
<td>27.09</td>
<td>25.67</td>
<td>6.03</td>
<td>25</td>
</tr>
<tr>
<td>2784</td>
<td>42.43</td>
<td>49.51</td>
<td>8.2</td>
<td>0</td>
</tr>
<tr>
<td>2921</td>
<td>27.15</td>
<td>24.45</td>
<td>5.69</td>
<td>0</td>
</tr>
<tr>
<td>3084</td>
<td>78.22</td>
<td>57.33</td>
<td>10.53</td>
<td>25</td>
</tr>
<tr>
<td>chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2697</td>
<td>60.04</td>
<td>27.64</td>
<td>10.86</td>
<td>0</td>
</tr>
<tr>
<td>2716</td>
<td>46.74</td>
<td>21.82</td>
<td>7.64</td>
<td>0</td>
</tr>
<tr>
<td>2775</td>
<td>8.7</td>
<td>6.74</td>
<td>1.77</td>
<td>0</td>
</tr>
<tr>
<td>obsidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2618</td>
<td>18.45</td>
<td>19.46</td>
<td>17.38</td>
<td>0</td>
</tr>
<tr>
<td>2706</td>
<td>59.64</td>
<td>23.32</td>
<td>11.61</td>
<td>0</td>
</tr>
<tr>
<td>2773</td>
<td>26.71</td>
<td>28.18</td>
<td>8.21</td>
<td>25</td>
</tr>
<tr>
<td>2774</td>
<td>28.18</td>
<td>27.7</td>
<td>7.7</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 10. Raw Material and Metric Characteristics of Bifaces, KdVo6-2010
Thirteen formed bifaces or biface fragments, presumably used as projectile points or knives, were recovered during excavations at Little John in 2010. Their distribution is summarized in the Table above, while photographs and general descriptions follow.

Basalt Bifaces

KdVo6: 2591 is a proximal Biface fragment recovered from the bottom of the B2 stratum of Unit S12W19. It is made on coarse-grained basalt with irregular flaking and a slightly concave thinned base.

Figure 51. KdVo6:2591, Proximal Biface Fragment, S12W19 B2.

KdVo6: 2661 is a proximal Biface fragment recovered from Unit S14W13 near the top of the B2 horizon at a depth of 2 cm below the surface. It is made on coarse grained basalt and exhibits irregular flaking and a slightly concave irregular base similar to KdVo6:2591. A channel runs along the center-line of one side from the base to the medial section.
KdVo6: 2661 is a complete Biface made on coarse grained basalt from Unit S14W13 from the B2 stratum at a depth of 29 cm. The point is triangular, with wide shoulders and a contracting stem that flares outwards at the base. Its form is similar to MacNeish’s “Besant” style (MacNeish 1964, Figure 87, Nos. 4 and 5), and is found in Northern Archaic collections throughout central Alaska (personal communication, B. Potter).

KdVo6: 2709 is a complete Biface made on coarse grained basalt from Unit S16W15 from the B2 stratum at a depth of 29 cm. The point is triangular, with wide shoulders and a contracting stem that flares outwards at the base. Its form is similar to MacNeish’s “Besant” style (MacNeish 1964, Figure 87, Nos. 4 and 5), and is found in Northern Archaic collections throughout central Alaska (personal communication, B. Potter).

KdVo6: 2709 is a Biface fragment recovered in Unit S14W14 from the Loess stratum at a depth of 19 cm below surface. It is made on coarse grained basalt and is
irregularly flaked. The fragment seems ovoid in form suggesting it functioned as a knife or cutting implement rather than a projectile point.

Figure 54. KdVo6:2784, Biface Fragment, S14W14, Loess level.

KdVo6: 2921 is a nearly complete Biface made on coarse grained basalt found in Unit S14W18 in the Loess stratum at 19 cm below surface. It is irregularly flaked invasively along all margins. Its rounded base and contracting distal broken end is suggestive of Holmes’ (2001) Chindadn Type 1 form, although the quality of the material and crudeness of the flaking make this merely suggestive.

Figure 55. KdVo6: 2921, Broken Biface, S14W18, Loess Stratum.
KdVo6:3084 is a thick cobble flake recovered from Unit N15W12 in the B2 stratum that has been bifacially flaked and is retouched along the curved edge. It is made on medium grained basalt and is similar in material appearance to a series of large modified and unmodified flakes found in the SW quadrant of the site.

![Image of KdVo6:3084](image)

Figure 56. KdVo6:3084, Bifacially Worked Split Cobble, N15W12, B2 Stratum.

Chert Bifaces

KdVo6: 2697 is a complete Biface on brown chert found in Unit N1W9 in the B2 stratum at 20 cm below surface. It is asymmetrical in outline, plano convex in cross-section, with slight basal thinning but no basal grinding. Primary flaking is variable with regular bifacial retouch flaking along most of the right and much of the upper left margins.

![Image of KdVo6:2697](image)

Figure 57. L: KdVo6:2697. Asymmetrical Biface on Brown Chert, N01W09, B2 Stratum.
KdVo6: 2716 is a contracting stemmed Biface with expanding base on black and grey chert from Unit S13W14 recovered from the B2 stratum at 21 cm below surface. The shoulders are uneven giving the piece an assymetrical outline and it is plano-convex in cross-section. It bears invasive flake scars which display a weak collateral pattern. The base is slightly rounded with minimal thinning.

Figure 58. KdVo6:2716 Contracting Stemmed Biface on Chert, S13W14, B2 Stratum

KdVo6:2775 is a small distal fragment of a Biface made on light grey chert recovered at the base of the B2 stratum of Unit S11W13. Other than noting it bears irregular bifacial retouch along its edges there is not much more to be said of this piece.

Figure 59. KdVo6:2775, Distal Biface Fragment, S11W13, B2 Stratum
Obsidian Bifaces
Four Biface fragments made on Obsidian were recovered at KdVo-6 in 2010. One is from the B1 and three from the B2 stratum; two of these pieces refit to form a complete biface.

KdVo6:2618 is a medial Biface fragment recovered from Unit S13W14 from the B1 stratum made on Wiki Peak obsidian. Other than its invasive and irregular flaking pattern there is little to say about this specimen.

Figure 60. KdVo6:2618, Obsidian Biface Fragment from Unit S13W14, B1 Stratum

KdVo6:2706 is a large (59.64 mm long / 23.32 mm wide) Biface missing its distal end recovered from Unit S11W13 from the B2 stratum made on Wiki Peak obsidian. The base is round and the piece is convex in plan view, caused by a pattern of collateral flaking creating a median ridge on both sides of the specimen.

Figure 61. KdVo6:2706, Obsidian Biface Fragment from Unit
KdVo6:2773 and 2774 are two Biface fragments that refit to form a complete Obsidian Biface; both were recovered from Unit S16W15 within the B2 stratum – 2773, the proximal fragment, from the NE quadrant and 2774, the distal portion, from the SE quadrant. Together the piece is ovate in form, and bears invasive irregular flaking and steep retouch along its distal margins. The source is Wiki Peak.

![Figure 62. KdVo6:2773 / 2774, Refitted Complete Obsidian Biface, S16W15, B2 Stratum](image)

Microblade Technology

Sixteen Microblades were recovered from the West Lobe B1 (n=1), Ash (n=2), B2 (n=12), and Loess (1) strata at KdVo-6 in 2010. The Table below provides a summary of their metric character; all of the microblades were fashioned on grey / light grey or black chert. Three of them, including the one black chert specimen, were recovered in the NW quadrant of the site on the hilltop while the remaining thirteen microblades came from the SW quadrant down below on the site’s promontory overlooking Mirror Creek (West Lobe).
The microblades from the West Lobe seem to occur in two loci based on recovery in adjacent units as illustrated below.

Several examples of these microblades are illustrated below.

<table>
<thead>
<tr>
<th>Group Label</th>
<th>Microblade Label (All)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Microblade Metrics</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Cortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>basalt</td>
<td></td>
<td>18.5</td>
<td>10.28</td>
<td>2.02</td>
</tr>
<tr>
<td>2956</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chert</td>
<td></td>
<td>12.96</td>
<td>8.67</td>
<td>2.26</td>
</tr>
<tr>
<td>2589</td>
<td></td>
<td>6.37</td>
<td>8.68</td>
<td>1.64</td>
</tr>
<tr>
<td>2633</td>
<td></td>
<td>10.63</td>
<td>6.95</td>
<td>1.77</td>
</tr>
<tr>
<td>2640</td>
<td></td>
<td>6.02</td>
<td>2.93</td>
<td>0.72</td>
</tr>
<tr>
<td>2707</td>
<td></td>
<td>12.61</td>
<td>6.36</td>
<td>1.33</td>
</tr>
<tr>
<td>2712</td>
<td></td>
<td>14.7</td>
<td>7.42</td>
<td>1.14</td>
</tr>
<tr>
<td>2713</td>
<td></td>
<td>7.75</td>
<td>2.69</td>
<td>0.88</td>
</tr>
<tr>
<td>2715</td>
<td></td>
<td>5.77</td>
<td>4.47</td>
<td>0.8</td>
</tr>
<tr>
<td>2718</td>
<td></td>
<td>16.11</td>
<td>6.45</td>
<td>1.57</td>
</tr>
<tr>
<td>2721</td>
<td></td>
<td>9.63</td>
<td>6.23</td>
<td>1.79</td>
</tr>
<tr>
<td>2858</td>
<td></td>
<td>11.74</td>
<td>3.6</td>
<td>1.82</td>
</tr>
<tr>
<td>2897</td>
<td></td>
<td>10.97</td>
<td>5.78</td>
<td>1.34</td>
</tr>
<tr>
<td>2898</td>
<td></td>
<td>18.57</td>
<td>7.5</td>
<td>1.42</td>
</tr>
<tr>
<td>2915</td>
<td></td>
<td>15.28</td>
<td>8.82</td>
<td>0.97</td>
</tr>
<tr>
<td>2958</td>
<td></td>
<td>12.12</td>
<td>5.23</td>
<td>1.23</td>
</tr>
<tr>
<td>3175</td>
<td></td>
<td>9.94</td>
<td>8.68</td>
<td>0.71</td>
</tr>
<tr>
<td>obsidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2978</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. Raw Material and Metric Characteristics of Microblades, KdVo6-2010

Figure 63. Microblade Distribution in B2 Stratum, SW Quadrant (West Lobe), KdVo-6–2010
A single microblade core fragment (KdVo6:2568) was also recovered from the lower B2 in the SW site quadrant as well (labeled C in the distribution map above in Unit S14W14). It is of a grey chert similar to several of the microblade fragments and illustrated below.
Large Blade or Blade-Like Lithic Artifacts

Four pieces that can be considered Blades or Blade-like artifacts were recovered at the Little John site in 2010. All were recovered in the SW site quadrant (West Lobe); one from the late Pleistocene Loess stratum, two from the low B2/Loess stratum, and one from the B2 stratum. Their raw material and metric characteristics are presented in the Table below.

<table>
<thead>
<tr>
<th>Group Label</th>
<th>Blades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Label</td>
<td>(All)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Blade Metrics</th>
<th>Width (mm)</th>
<th>Thickness (mm)</th>
<th>Cortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>chert</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2845</td>
<td>30.4</td>
<td>8.93</td>
<td>6.84</td>
<td>0</td>
</tr>
<tr>
<td>2855</td>
<td>8.93</td>
<td>3.29</td>
<td>0.65</td>
<td>0</td>
</tr>
<tr>
<td>jasper</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2703</td>
<td>81.09</td>
<td>28.84</td>
<td>7.7</td>
<td>25</td>
</tr>
<tr>
<td>obsidian</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2590</td>
<td>54.85</td>
<td>21.88</td>
<td>7.4</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 12. Large Blade Raw Material and Metrics, KdVo6-2010

Figure 67. KdVo6:2590, Obsidian Blade, S12W19, Base of B2 Stratum

KdVo6:2590 is a large Blade-like edge modified flake struck from Wiki Peak obsidian. The high dorsal ridge bears a flake scar forming two arrises, while the proximal
left dorsal surface retains primary cortex. The right and distal margins are edge modified by use.

Figure 68. KdVo6:2703, Retouched Jasper Blade, S13W13, Loess Stratum

KdVo6:2703 is a retouched Blade made on a dark red jasper found in Unit S13W13 in the Loess stratum at 14 cm below surface datum. The dorsal surface has two principal arrises, one along the left margin and one down the center forming a shallow dorsal ridge. Short, direct, stepped unifacial retouch is found along the left, distal, and right margins, each edge holding different angles: the right margin at 25 degrees, the left margin at about 40 degrees, and the steep distal margin at about 80 degrees.

Figure 69. KdVo6:2845, Blade-like Flake on Chert, S12W13, B2 Stratum

KdVo6: 2845 is a Blake-like Flake on grey chert from Unit S12W13 in the B2 stratum that is included in this category on the basis of its high dorsal ridge. There is modest use wear along the incurvate right margin.
Scrapers

Seven Scrapers were collected at Little John in 2010. Six of the Scrapers were found in the B2 and one in the B1 strata. Their raw material and metric characteristics are summarized in the Table below, followed by illustrations and descriptions of a selection of these artifacts.

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Scraper Metrics</th>
<th>Cortex</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length (mm)</td>
<td></td>
</tr>
<tr>
<td>andesite</td>
<td>109.69</td>
<td>75</td>
</tr>
<tr>
<td>2920</td>
<td>117.91</td>
<td></td>
</tr>
<tr>
<td>basalt</td>
<td>43.9</td>
<td>50</td>
</tr>
<tr>
<td>3031</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>2529</td>
<td>43.45</td>
<td></td>
</tr>
<tr>
<td>9.74</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>chert</td>
<td>31.37</td>
<td>0</td>
</tr>
<tr>
<td>2636</td>
<td>37.98</td>
<td></td>
</tr>
<tr>
<td>2720</td>
<td>15.49</td>
<td>0</td>
</tr>
<tr>
<td>13.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2797</td>
<td>18.84</td>
<td>0</td>
</tr>
<tr>
<td>14.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jaspar</td>
<td>15.98</td>
<td>0</td>
</tr>
<tr>
<td>2672</td>
<td>13.16</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>obsidian</td>
<td>51.56</td>
<td>25</td>
</tr>
<tr>
<td>2607</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>19.11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2705</td>
<td>27.69</td>
<td></td>
</tr>
<tr>
<td>19.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>50.56</td>
<td>50</td>
</tr>
<tr>
<td>3087</td>
<td>40.15</td>
<td></td>
</tr>
<tr>
<td>15.14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 13. Raw Material and Metric Characteristics of Scrapers, KdVo6-2010
Figure 70. KdVo6:2607, Scraper / Plane on Obsidian Flake Core, Unit S16W17, B2 Straum

KdVo6:2607 is a Scraper / Plane on an irregular flaked core of Wiki Peak obsidian, recovered from the B2 stratum in Unit S16W17. The piece is flaked around its entire circumference from multiple angles and exhibits one flat surface which holds a series of parallel steep retouch flake scars along one edge.

Figure 71. KdVo6:2705, Obsidian Multi-Scraper, S16W15, Low B2 / Loess

KdVo6:2705 is a Multi-edged Thumbnail Scraper with retouch along almost the entire circumference of the piece recovered from the bottom of the B2 / top of Loess interface in Unit S16W15 made on Wiki Peak obsidian. The right and distal margins are steep-edged (c. 65 degree angle), while the left margin is shallow (c. 35 degree angle).
The right and left margins bear bifacial retouch, although the left margin is more extensive and regular along the ventral surface than the right. A large flake removed from the dorsal surface below the median ridge provides a convenient concavity for the right thumb.

This piece is remarkably similar in form to another Multiple-Edged Thumbnail Scraper made on fine grained black chert (KdVo6:2165). Recovered in 2009 from the adjacent Unit S15W16, at a similar depth of the top of the Loess stratum, and associated with a black chert Projectile Point (KdVo6:2159) also from the top of the Loess stratum, the three artifacts likely represent the same occupation at the top of Loess level.

Figure 72. KdVo6:2159 (Top R) and KdVo6:2165, S15 W16
Figure 73. KdVo6:2636, End Scraper on Dark Brown Chert, S13W14, B2 Stratum

KdVo6:2636 is a small End Scraper fashioned on a distal broken flake of dark brown chert recovered from Unit S13W14 in the middle of the B2 stratum at a depth of 7 cm below surface. The flake is thin with a series of shallow (c. 40 degrees) parallel unifacial retouch scars on the dorsal surface forming the scraping edge.

Figure 74. KdVo6:2672, End Scraper on Jasper Flake, S14W13, B2 Stratum

KdVo6:2672 is a small End Scraper on a distal broken jasper flake recovered from Unit S14W13 in the B2 stratum. Similar to the previous specimen, it bears a series of shallow (c. 40 degrees) parallel unifacial retouch scars on the dorsal surface to form the scraping edge. Their similarity suggests the same or closely related individuals may have made the two specimens during the same time period.
Finally, the artifact shown above is comprised of three refitted pieces all recovered from Unit S13W13. Two (KdVo6:2710 and 2711) were found in the Loess stratum while the other (2841) was found at the base of the B2 stratum. There is a strong central arris running the length of the refitted artifact and the sides are roughly parallel, giving it a large blade-like appearance. The left margin bears both large and small unifacial retouch scars on the dorsal surface from the proximal base to near the distal end, forming a shallow angle of c. 35 degrees.
I believe the entire artifact is properly assigned to the Loess stratum as part of the Chindadn assemblage at Little John. This is further supported by the recovery of additional thick basalt flakes from what appears to be the same source material, some bearing retouched margins and/or cortex, from the Loess stratum in other nearby units in the West Lobe, such as KdVo6:2615, which was vertically inclined into the bottom of the B2 stratum, resting on Loess sediment, in the baulk between Units S15W17 and S15W18.

Flake Debitage and Edge Modified – Retouched – Utilized Flakes

This class of artifact is ubiquitous throughout the site through all levels. Together they account for 78.52 percent of total artifacts recovered in 2010 (see Table 1, above). Their distribution through the levels is uneven, perhaps reflecting intensity of site use at different time periods. Within this artifact category five were surface or un-assignable finds, thirty-nine (4.5%) were recovered from the Late Prehistoric Strata (O/A, B1, and Ash horizons), six hundred and eighty-one (78.2%) were recovered from the Holocene B2 horizon, and the remaining one hundred and forty-five from the Late Pleistocene horizons (16.6%).

Edge Modified – Retouched – Utilized Flakes usually consist of larger secondary waste flakes produced in the manufacture of more formal tools that have been subsequently utilized, producing characteristic irregular flake scars along one or more edges during their expedient use as slicing, cutting, or scraping implements. Less often they exhibit deliberate secondary modification in the form of semi- to regular retouch along one or more edges to facilitate more specific use, although the two categories of edge modification cross-grade into each other making it sometimes difficult to determine whether the modification was the product of utilization or deliberate retouching. Flake Debitage is comprised of primary (cortical) and secondary waste flakes discarded in the manufacture of formal tools. Some examples of these artifact forms recovered in 2010 are presented below.
Figure 77. KdVo6:2567, Edge Modified Flake on Grey Chert, S14W14, B2 Stratum

Figure 78. KdVo6:2596, Edge Modified Flake on Grey Chert, S12W19, B2 Stratum

Figure 79. Edge Modified Flakes, L: KdVo6:2730, S13W19, B2 R: KdVo6:2899, N9W9, B2
Figure 80. KdVo6:2878, Unifacial Retouched Flake, S15W13, B2 Stratum

KdVo6:2878 is a large light and dark mottled grey chert broken Flake that has steep short, direct, stepped steep retouch along the left distal margin; it may be a fragment of a larger scraper.

Figure 81. KdVo6:2656, Spall on Grey Chert, S14W13, B2 Stratum

KdVo6:2656 is a grey chert spall-like flake with parallel margins. Although Micro-blade-like it lacks a dorsal aris and its rectangular outline in plane view is contrary to the triangular outline expected of a Burin Spall. Nevertheless it showes extensive edge modification along its right margin.
Figure 82. KdVo6:2837, Lot of Basalt Debitage Waste Flakes, S13W13, B2 Stratum

Figure 83. KdVo6:2815, Obsidian Thinning Flake, S11W13, Loess Stratum

Figure 84. KdVo6:2972, Lot of Grey Chert Flakes, S16W15, Loess Stratum
KdVo6:2972 and 2973 are two lots of Grey Chert and Basalt Flakes some of which show edge-modification from use as expedient cutting tools. They were recovered from Unit S16W15 from within the Loess Stratum and are part of the West Lobe Chindadn assemblage.

KdVo6:3114, 15, 17, 18, and 19 are a series of five flakes recovered from the East Lobe Middle Paleosol Complex stratum at depths below surface between 72 and 77 cm in Unit N15W2. Four are on chert and one (3118) is basalt. KdVo6:3114 (top in the photo above) also bears a channel scar along the midline of the dorsal surface. All can be classified as reduction or sharpening flakes.
Pebble / Cobble Tools – Hammer Stones / Choppers / Split Pebbles / Anvils / Scraper Planes

This class of artifact is ubiquitous across the Little John site, consisting of cortical pebbles and cobbles presumably used for shaping or flaking other stone and breaking bone for marrow extraction, producing bone slivers for further working into a variety of tools, use as boiling stones in organic baskets to cook a variety of food, split cobbles and pebbles for chopping wood and bone and other expedient uses, that are often immediately discarded, flat-sided or split cobbles for use as a stable base for flaking stone or breaking bone, and planing wood and bone.

Hammer Stones are recognized on the basis of morphological characteristics of a crushed and / or punctate surface along the margin or one surface and of a size and shape to be held comfortably in the hand. Split Cobble Tools might be used as a Chopper or as a primary hide scraping tool (the Thii Cho). Split Pebbles are generally produced by Bipolar Percussion, resulting in a sharp cutting edge along the circumference of the artifact and percussive crushing at either end. Anvils are large dense cobbles with one flat surface that can be buried level with the ground surface and serve as a stable solid platform for percussive flaking of other stones. Scraper planes are large cobbles split to produce a flat surface at one end of which will be found steep unifacial retouch in order to provide a planning edge to flatten wood or bone. The strength of their designation as artifacts is further supported by their close association with unequivocal artifacts, flake debitage, spirally fractured bone, or other features (Andrefsky 2005, Kooyman 2000, Odell 2003).

These artifacts are common throughout all Paleolithic assemblages, but are generally found at higher rates within Late Prehistoric and mid-Holocene assemblages in the Northwest Subarctic that are thought to have used higher percentages of bone projectiles within their tool kit (Workman 1978). They are often found in clusters that can be described as work station features. At the Little John site they are found through all levels. Some examples encountered in excavations in 2010 follow.

KdVo6:2548, 2550, 2554, 2555, 2556 were all recovered from Unit S14W14 in the West Lobe from the B1 stratum from Feature 2010-02. This pebble / cobble complex consists of several Hammer Stones / Anvils / Boiling Stones, a number of which are illustrated below. Their in situ relationship is illustrated above in discussion of Feature 2010-02.
Figure 87. KdVo6:2548 Cobble Hammer Stone, S14W14, B1 Stratum

Figure 88. KdVo6:2550, Cobble Hammer Stone, S14W14, B1 Stratum

Figure 89. KdVo6:2554, Cobble Anvil / Hammer Stone, S14W14, B1 Stratum
Figure 90. KdVo6:2555, Cobble Hammer Stone / Boiling Stone, S14W14, B1 Stratum

Figure 91. KdVo6:2556, Cobble Anvil / Hammer Stone, S14W14, B1 Stratum

KdVo6:3047, 3048, 3049, 3050, 3051, 3052, illustrated below, were all recovered from Unit N19W12 in the B2 stratum.

Figure 92. KdVo6:3047, Anvil Stone / Boiling Stone, N19W12, B2 Stratum
Figure 93. KdVo6:3048, Cobble Anvil / Boiling Stone, N19W12, B2 Stratum

Figure 94. KdVo6:3049, Cobble Hammer / Anvil Stone, N19W12, B2 Stratum

Figure 95. KdVo6:3050, Pebble Hammer / Boiling Stone, N19W12, B2 Stratum
Figure 96. KdVo6:3051, Cobble Hammer / Boiling Stone, N19W12, B2 Stratum

Figure 97. KdVo6:3052, Pebble Hammer / Boiling Stone, N19W12, B2 Stratum

KdVo6: 2648, 2649, 2650, and 2651, illustrated below, were all recovered from Unit S13W14 in the lowest Loess Stratum associated with the Chindadn assemblage.
Figure 98. KdVo6:2648, Hammer Stone, S13W14, Loess Stratum

KdVo6:2648 represents a fist-sized cobble Hammer Stone recovered from Unit S13W14 in the Loess stratum. It is heavily punctated at one end and side and less so along the remaining margins.

Figure 99. KdVo6: 2649, 2650, 2651, Hammer / Anvil / Boiling Stones, S13W14, Loess Stratum

KdVo6:2648 – 2651 represent four fist-sized cobble Hammer / Anvil / Boiling Stones recovered from Unit S13W14 in the Loess stratum. KdVo6:2648 is a Hammer / Anvil Stone heavily punctated at one end and side and less so along the remaining margins. KdVo6:2649 is crushed and battered at one end, perhaps as a result of its use as a hammer, and its surface is...
covered with a fine organic greasy matrix, common on boiling stones; KdVo6:2651 has similar morphology. Finally, KdVo6:2650 has an extensive punctate surface on one side and along the margins of the piece and less so on the other side.

Historic Remains

A limited amount of historic remains were recovered at the Little John site in 2010, consisting of two .30-30 caliber bullet shells, a wooden stake, and a pork chop bone, all in the O/A horizon in the West Lobe.

![Figure 100. KdVo6-2010 Historic Remains](image)

CONCLUDING REMARKS

Our work at the Little John site in 2010 has continued to expand the archaeological data set related to the prehistory of the Yukon – Alaska borderlands. The addition to the field crew of Michael Grooms who has taken on a more detailed geoarchaeological study of the Little John site for his Ph.D. dissertation under the direction of Dr. E. J. Dixon of the University of New Mexico is a welcome new resource to our efforts to analyze this arena of data from the site; we look forward to Mr. Grooms contributions over the next few years and express our gratitude to EJayD for his generous support of our efforts. Our efforts to recruit additional graduate participation in the further excavation and, more importantly, the analysis of the various data sets our work is generating is a major priority for the project in the immediate years ahead.

In conclusion I can only reiterate my appreciation to the Dineh of the Borderlands, the students, interns, and local volunteers, my colleagues, and Yukon College for their continued support of our efforts to reveal further the material cultural evidence of the history of human occupation in this most westerly region of Canada that holds the story of our country from the first arrival of humans to our contemporary times.
REFERENCES

Ackerman, R.E.

Alexander, H.L.

Anderson, D. D.
1968a A Stone Age Campsite at the Gateway to America. *Scientific American*, 218(6), 24-33.

Andrefsky, W.

Bever, M.R.

Bigelow, N.H. and W.T. Powers

Bostock H. S.

Bureau of Indian Affairs [BIA].

Campbell, J. M.

Carlson, C. C.
1979 The Early Component at the Bear Cove Site, BC. *Canadian Journal of Archaeology* 3:177-94.

Carlson, R.L.

Cinq-Mars, J. and R. Gotthardt

Cinq-Mars, J. & R. E. Morlan

Clark, D. W.

Clark, D. W., R. M. Gotthardt, & P. G. Hare
Clark, D. W. & R. E. Morlan
1982. Western Subarctic Prehistory: Twenty Years Later. Canadian Journal of Archaeology, 6, 79-83

Cook, J.P.

Crossen, K. D.R. Yesner, and N. A. Easton

Denton, G. H.

Derry, D. E.

Dilley, T. E.

Dixon, E. J.

Dobrowolsky, H.

Easton, N. A.
2003 Eight Part Series on 2003 Field School in the Yukon News:"Unearthing Culture: A Field Guide", 9 June, p. 3; "Anthropology Students Get Their Hands Dirty", 20 June, p. 22; "Potlatch Serves as Initiation Ceremony for Student Anthropologists", 25 June, p. 20; "Ultimately, Archaeologists Have to Dig a Hole", 27 June, p. 25; "Tall Tales and Truth

2007c Excavations at the Little John Site (KdVo-6). Report to the White River First Nation, Yukon Heritage Branch, and Archaeological Survey of Canada. Whitehorse: Northern Research Institute.

2008 "It's Hard Enough to Control Yourself; It's Ridiculous to Think You Can Control Animals: Competing Views on the Bush in Contemporary Yukon." The Northern Review, No. 29 (Fall): 21-38.

Easton, N. A. and G. MacKay.

Easton, N. A., G. MacKay, and P. B. Young.

Goebel, T. and N.H. Bigelow

Goebel, T., W.R. Powers, N.H. Bigelow and A.S. Higgs

Goebel, T. & S. B. Slobodin.

Greer, S. C.

Gotthardt, R.

Guthrie, R. D.

Hamilton, T.D a and T. Goebel

Hammer, T. J. and H. Dobrowolsky
2001 Tr’ochëk – the Archaeology and History of a Han Fish Camp. Dawson: Tr’ondëk Hwëchin.

Hare, P.G.

Hare, P. G., S. Greer, R. Gotthardt, R. Farnell, V. Bowyer, C. Schweger, & D. Strand.

Hare, P. G. & T.J. Hammer.
Heffner, T.

Hoffecker, J.F.

Hoffecker, J.F., W.R. Powers and T. Goebel

Hoffecker, J.F, W. R. Powers, and N. Bigelow

Hoffecker, J.F. and S.A. Elias

Holmes, C.E.

Holmes, C.E., R. VanderHoek, and T. E. Dilley

Hosley, E. H.
Hughes, O. L., N. W. Rutter and J. J. Clague

Hutchinson, V., N.A. Easton, G. MacKay, P.B. Young

Ives, J. W.

Johnson, F.

Johnson, F. & H. M. Raup.

Kari, J. and B. A. Potter

Krinsley, D. B.

Kooymans, B. P.

Kunz, M.L., M. Bever, and C. Adkins

Kunz, M.L. and R.E. Reanier

Leblanc R. J. & M. J. Wright.

Lerbekmo, J. F. and J. A. Westgate

Lewis, D. W. & D. McConchie.

MacNeish, R. S.

Matson, R.G.

Matson, R.G. and M.P.R. Magne

MacIntosh, G.

Mitchell, D. and D.L. Pokotylo

Moberly, C.M.

Morlan, R.E.

Morrison, D. A.

Nadasdy, P.

Nakazawa, J.

Odell, G. H.

Oswald, E. T. & J. P. Senyk.

Pearson, G.A.

Pewe, T. L.

Pewe, T. L. & R. D. Reger (eds.).

Potter, B.A.

Rampton, V.

Sheppard, W.L.

Wahl, H. E., D. B. Fraser, R. C. Harvey, and J. B. Maxwell.

Walde, K.
West, F.H.

West, K.D. and J.A. Donaldson.

Workman, W. B.

Wright, J. V.

Yesner, D. R.

2011 Geoarchaeological And Zooarchaeological Correlates Of Eastern Beringian Assemblages: Insights from the Little John Site, Yukon. In Ted Goebel and Ian Buvit
Training The Next Generation
of Indigenous Archaeologists at the Little John Site